Abstract
The leading cause of mortality and morbidity in humans with cystic fibrosis is lung disease. Advances in our understanding of the pathogenesis of the lung disease of cystic fibrosis, as well as development of innovative therapeutic interventions, have been compromised by the lack of a natural animal model. The utility of the CFTR-knockout mouse in studying the pathogenesis of cystic fibrosis has been limited because of their failure, despite the presence of severe intestinal disease, to develop lung disease. Herein, we describe the phenotype of an inbred congenic strain of CFTR-knockout mouse that develops spontaneous and progressive lung disease of early onset. The major features of the lung disease include failure of effective mucociliary transport, postbronchiolar over inflation of alveoli and parenchymal interstitial thickening, with evidence of fibrosis and inflammatory cell recruitment. We speculate that the basis for development of lung disease in the congenic CFTR-knockout mice is their observed lack of a non-CFTR chloride channel normally found in CFTR-knockout mice of mixed genetic background.
Full Text
The Full Text of this article is available as a PDF (961.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bedrossian C. W., Greenberg S. D., Singer D. B., Hansen J. J., Rosenberg H. S. The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum Pathol. 1976 Mar;7(2):195–204. doi: 10.1016/s0046-8177(76)80023-8. [DOI] [PubMed] [Google Scholar]
- Brody J. S., Kaplan N. B. Proliferation of alveolar interstitial cells during postnatal lung growth. Evidence for two distinct populations of pulmonary fibroblasts. Am Rev Respir Dis. 1983 Jun;127(6):763–770. doi: 10.1164/arrd.1983.127.6.763. [DOI] [PubMed] [Google Scholar]
- COMROE J. H., Jr, NISELL O. I., NIMS R. G. A simple method for concurrent measurement of compliance and resistance to breathing in anesthetized animals and man. J Appl Physiol. 1954 Sep;7(2):225–228. doi: 10.1152/jappl.1954.7.2.225. [DOI] [PubMed] [Google Scholar]
- Canessa C. M., Schild L., Buell G., Thorens B., Gautschi I., Horisberger J. D., Rossier B. C. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994 Feb 3;367(6462):463–467. doi: 10.1038/367463a0. [DOI] [PubMed] [Google Scholar]
- Clarke L. L., Grubb B. R., Gabriel S. E., Smithies O., Koller B. H., Boucher R. C. Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science. 1992 Aug 21;257(5073):1125–1128. doi: 10.1126/science.257.5073.1125. [DOI] [PubMed] [Google Scholar]
- Clarke L. L., Grubb B. R., Yankaskas J. R., Cotton C. U., McKenzie A., Boucher R. C. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):479–483. doi: 10.1073/pnas.91.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis P. B., Drumm M., Konstan M. W. Cystic fibrosis. Am J Respir Crit Care Med. 1996 Nov;154(5):1229–1256. doi: 10.1164/ajrccm.154.5.8912731. [DOI] [PubMed] [Google Scholar]
- Ewart S., Levitt R., Mitzner W. Respiratory system mechanics in mice measured by end-inflation occlusion. J Appl Physiol (1985) 1995 Aug;79(2):560–566. doi: 10.1152/jappl.1995.79.2.560. [DOI] [PubMed] [Google Scholar]
- FRY D. L., EBERT R. V., STEAD W. W., BROWN C. C. The mechanics of pulmonary ventilation in normal subjects and in patients with emphysema. Am J Med. 1954 Jan;16(1):80–97. doi: 10.1016/0002-9343(54)90325-3. [DOI] [PubMed] [Google Scholar]
- Grubb B. R., Vick R. N., Boucher R. C. Hyperabsorption of Na+ and raised Ca(2+)-mediated Cl- secretion in nasal epithelia of CF mice. Am J Physiol. 1994 May;266(5 Pt 1):C1478–C1483. doi: 10.1152/ajpcell.1994.266.5.C1478. [DOI] [PubMed] [Google Scholar]
- Hessel E. M., Zwart A., Oostveen E., Van Oosterhout A. J., Blyth D. I., Nijkamp F. P. Repeated measurement of respiratory function and bronchoconstriction in unanesthetized mice. J Appl Physiol (1985) 1995 Nov;79(5):1711–1716. doi: 10.1152/jappl.1995.79.5.1711. [DOI] [PubMed] [Google Scholar]
- Kent G., Oliver M., Foskett J. K., Frndova H., Durie P., Forstner J., Forstner G. G., Riordan J. R., Percy D., Buchwald M. Phenotypic abnormalities in long-term surviving cystic fibrosis mice. Pediatr Res. 1996 Aug;40(2):233–241. doi: 10.1203/00006450-199608000-00008. [DOI] [PubMed] [Google Scholar]
- Khan T. Z., Wagener J. S., Bost T., Martinez J., Accurso F. J., Riches D. W. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995 Apr;151(4):1075–1082. doi: 10.1164/ajrccm/151.4.1075. [DOI] [PubMed] [Google Scholar]
- Knowles M. R., Paradiso A. M., Boucher R. C. In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis. Hum Gene Ther. 1995 Apr;6(4):445–455. doi: 10.1089/hum.1995.6.4-445. [DOI] [PubMed] [Google Scholar]
- Konstan M. W., Hilliard K. A., Norvell T. M., Berger M. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med. 1994 Aug;150(2):448–454. doi: 10.1164/ajrccm.150.2.8049828. [DOI] [PubMed] [Google Scholar]
- Lamarre A., Reilly B. J., Bryan A. C., Levison H. Early detection of pulmonary function abnormalities in cystic fibrosis. Pediatrics. 1972 Aug;50(2):291–298. [PubMed] [Google Scholar]
- Langridge-Smith J. E. Interaction between sodium and chloride transport in bovine tracheal epithelium. J Physiol. 1986 Jul;376:299–319. doi: 10.1113/jphysiol.1986.sp016155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Motoyama E. K. Pulmonary mechanics during early postnatal years. Pediatr Res. 1977 Mar;11(3 Pt 2):220–223. [PubMed] [Google Scholar]
- O'Brien E. P., Novak E. K., Keller S. A., Poirier C., Guénet J. L., Swank R. T. Molecular map of chromosome 19 including three genes affecting bleeding time: ep, ru, and bm. Mamm Genome. 1994 Jun;5(6):356–360. doi: 10.1007/BF00356554. [DOI] [PubMed] [Google Scholar]
- Oppenheimer E. H., Esterly J. R. Pathology of cystic fibrosis review of the literature and comparison with 146 autopsied cases. Perspect Pediatr Pathol. 1975;2:241–278. [PubMed] [Google Scholar]
- Penney D. P., Keng P. C., Derdak S., Phipps R. P. Morphologic and functional characteristics of subpopulations of murine lung fibroblasts grown in vitro. Anat Rec. 1992 Mar;232(3):432–443. doi: 10.1002/ar.1092320312. [DOI] [PubMed] [Google Scholar]
- Quinton P. M. Cystic fibrosis: a disease in electrolyte transport. FASEB J. 1990 Jul;4(10):2709–2717. doi: 10.1096/fasebj.4.10.2197151. [DOI] [PubMed] [Google Scholar]
- Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
- Rozmahel R., Wilschanski M., Matin A., Plyte S., Oliver M., Auerbach W., Moore A., Forstner J., Durie P., Nadeau J. Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nat Genet. 1996 Mar;12(3):280–287. doi: 10.1038/ng0396-280. [DOI] [PubMed] [Google Scholar]
- Smith J. J., Travis S. M., Greenberg E. P., Welsh M. J. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell. 1996 Apr 19;85(2):229–236. doi: 10.1016/s0092-8674(00)81099-5. [DOI] [PubMed] [Google Scholar]
- Snouwaert J. N., Brigman K. K., Latour A. M., Malouf N. N., Boucher R. C., Smithies O., Koller B. H. An animal model for cystic fibrosis made by gene targeting. Science. 1992 Aug 21;257(5073):1083–1088. doi: 10.1126/science.257.5073.1083. [DOI] [PubMed] [Google Scholar]
- Wilschanski M. A., Rozmahel R., Beharry S., Kent G., Li C., Tsui L. C., Durie P., Bear C. E. In vivo measurements of ion transport in long-living CF mice. Biochem Biophys Res Commun. 1996 Feb 27;219(3):753–759. doi: 10.1006/bbrc.1996.0306. [DOI] [PubMed] [Google Scholar]