Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Feb 1;101(3):527–535. doi: 10.1172/JCI1885

Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects.

H Masaki 1, T Kurihara 1, A Yamaki 1, N Inomata 1, Y Nozawa 1, Y Mori 1, S Murasawa 1, K Kizima 1, K Maruyama 1, M Horiuchi 1, V J Dzau 1, H Takahashi 1, T Iwasaka 1, M Inada 1, H Matsubara 1
PMCID: PMC508594  PMID: 9449684

Abstract

Angiotensin (Ang) II has two major receptor isoforms, AT1 and AT2. Currently, AT1 antagonists are undergoing clinical trials in patients with cardiovascular diseases. Treatment with AT1 antagonists causes elevation of plasma Ang II which selectively binds to AT2 and exerts as yet undefined effects. Cardiac AT2 level is low in adult hearts, whereas its distribution ratio is increased during cardiac remodeling and its action is enhanced by application of AT1 antagonists. Although in AT2 knock-out mice sensitivity to the pressor action of Ang II was increased, underlying mechanisms remain undefined. Here, we report the unexpected finding that cardiac-specific overexpression of the AT2 gene using alpha-myosin heavy chain promoter resulted in decreased sensitivity to AT1-mediated pressor and chronotropic actions. AT2 protein undetectable in the hearts of wild-type mice was overexpressed in atria and ventricles of the AT2 transgenic (TG) mice and the proportions of AT2 relative to AT1 were 41% in atria and 45% in ventricles. No obvious morphological change was observed in the myocardium and there was no significant difference in cardiac development or heart to body weight ratio between wild-type and TG mice. Infusion of Ang II to AT2 TG mice caused a significantly attenuated increase in blood pressure response and the change was completely blocked by pretreatment with AT2 antagonist. This decreased sensitivity to Ang II-induced pressor action was mainly due to the AT2-mediated strong negative chronotropic effect and exerted by circulating Ang II in a physiological range that did not stimulate catecholamine release. Isolated hearts of AT2 transgenic mice perfused using a Langendorff apparatus also showed decreased chronotropic responses to Ang II with no effects on left ventricular dp/dt max values, and Ang II-induced activity of mitogen-activated protein kinase was inhibited in left ventricles in the transgenic mice. Although transient outward K+ current recorded in cardiomyocytes from AT2 TG mice was not influenced by AT2 activation, this study suggested that overexpression of AT2 decreases the sensitivity of pacemaker cells to Ang II. Our results demonstrate that stimulation of cardia AT2 exerts a novel antipressor action by inhibiting AT1-mediated chronotropic effects, and that application of AT1 antagonists to patients with cardiovascular diseases has beneficial pharmacotherapeutic effects of stimulating cardiac AT2.

Full Text

The Full Text of this article is available as a PDF (365.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano K., Dutcher D. L., Port J. D., Minobe W. A., Tremmel K. D., Roden R. L., Bohlmeyer T. J., Bush E. W., Jenkin M. J., Abraham W. T. Selective downregulation of the angiotensin II AT1-receptor subtype in failing human ventricular myocardium. Circulation. 1997 Mar 4;95(5):1193–1200. doi: 10.1161/01.cir.95.5.1193. [DOI] [PubMed] [Google Scholar]
  2. Baker K. M., Booz G. W., Dostal D. E. Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Annu Rev Physiol. 1992;54:227–241. doi: 10.1146/annurev.ph.54.030192.001303. [DOI] [PubMed] [Google Scholar]
  3. Booz G. W., Baker K. M. Role of type 1 and type 2 angiotensin receptors in angiotensin II-induced cardiomyocyte hypertrophy. Hypertension. 1996 Oct;28(4):635–640. doi: 10.1161/01.hyp.28.4.635. [DOI] [PubMed] [Google Scholar]
  4. Brink M., Erne P., de Gasparo M., Rogg H., Schmid A., Stulz P., Bullock G. Localization of the angiotensin II receptor subtypes in the human atrium. J Mol Cell Cardiol. 1996 Aug;28(8):1789–1799. doi: 10.1006/jmcc.1996.0168. [DOI] [PubMed] [Google Scholar]
  5. Buisson B., Laflamme L., Bottari S. P., de Gasparo M., Gallo-Payet N., Payet M. D. A G protein is involved in the angiotensin AT2 receptor inhibition of the T-type calcium current in non-differentiated NG108-15 cells. J Biol Chem. 1995 Jan 27;270(4):1670–1674. doi: 10.1074/jbc.270.4.1670. [DOI] [PubMed] [Google Scholar]
  6. Christen Y., Waeber B., Nussberger J., Porchet M., Borland R. M., Lee R. J., Maggon K., Shum L., Timmermans P. B., Brunner H. R. Oral administration of DuP 753, a specific angiotensin II receptor antagonist, to normal male volunteers. Inhibition of pressor response to exogenous angiotensin I and II. Circulation. 1991 Apr;83(4):1333–1342. doi: 10.1161/01.cir.83.4.1333. [DOI] [PubMed] [Google Scholar]
  7. Dostal D. E., Rothblum K. N., Conrad K. M., Cooper G. R., Baker K. M. Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am J Physiol. 1992 Oct;263(4 Pt 1):C851–C863. doi: 10.1152/ajpcell.1992.263.4.C851. [DOI] [PubMed] [Google Scholar]
  8. Everett A. D., Tufro-McReddie A., Fisher A., Gomez R. A. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-beta 1 expression. Hypertension. 1994 May;23(5):587–592. doi: 10.1161/01.hyp.23.5.587. [DOI] [PubMed] [Google Scholar]
  9. Ferrario C. M., Gildenberg P. L., McCubbin J. W. Cardiovascular effects of angiotensin mediated by the central nervous system. Circ Res. 1972 Mar;30(3):257–262. doi: 10.1161/01.res.30.3.257. [DOI] [PubMed] [Google Scholar]
  10. Gordon J. W., Scangos G. A., Plotkin D. J., Barbosa J. A., Ruddle F. H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7380–7384. doi: 10.1073/pnas.77.12.7380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grady E. F., Sechi L. A., Griffin C. A., Schambelan M., Kalinyak J. E. Expression of AT2 receptors in the developing rat fetus. J Clin Invest. 1991 Sep;88(3):921–933. doi: 10.1172/JCI115395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haywood G. A., Gullestad L., Katsuya T., Hutchinson H. G., Pratt R. E., Horiuchi M., Fowler M. B. AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation. 1997 Mar 4;95(5):1201–1206. doi: 10.1161/01.cir.95.5.1201. [DOI] [PubMed] [Google Scholar]
  13. Hein L., Barsh G. S., Pratt R. E., Dzau V. J., Kobilka B. K. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature. 1995 Oct 26;377(6551):744–747. doi: 10.1038/377744a0. [DOI] [PubMed] [Google Scholar]
  14. Hein L., Stevens M. E., Barsh G. S., Pratt R. E., Kobilka B. K., Dzau V. J. Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6391–6396. doi: 10.1073/pnas.94.12.6391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang X. C., Richards E. M., Sumners C. Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J Biol Chem. 1996 Jun 28;271(26):15635–15641. doi: 10.1074/jbc.271.26.15635. [DOI] [PubMed] [Google Scholar]
  16. Ichiki T., Labosky P. A., Shiota C., Okuyama S., Imagawa Y., Fogo A., Niimura F., Ichikawa I., Hogan B. L., Inagami T. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature. 1995 Oct 26;377(6551):748–750. doi: 10.1038/377748a0. [DOI] [PubMed] [Google Scholar]
  17. Irisawa H., Brown H. F., Giles W. Cardiac pacemaking in the sinoatrial node. Physiol Rev. 1993 Jan;73(1):197–227. doi: 10.1152/physrev.1993.73.1.197. [DOI] [PubMed] [Google Scholar]
  18. Kang J., Posner P., Sumners C. Angiotensin II type 2 receptor stimulation of neuronal K+ currents involves an inhibitory GTP binding protein. Am J Physiol. 1994 Nov;267(5 Pt 1):C1389–C1397. doi: 10.1152/ajpcell.1994.267.5.C1389. [DOI] [PubMed] [Google Scholar]
  19. Kang J., Sumners C., Posner P. Angiotensin II type 2 receptor-modulated changes in potassium currents in cultured neurons. Am J Physiol. 1993 Sep;265(3 Pt 1):C607–C616. doi: 10.1152/ajpcell.1993.265.3.C607. [DOI] [PubMed] [Google Scholar]
  20. Kijima K., Matsubara H., Murasawa S., Maruyama K., Mori Y., Ohkubo N., Komuro I., Yazaki Y., Iwasaka T., Inada M. Mechanical stretch induces enhanced expression of angiotensin II receptor subtypes in neonatal rat cardiac myocytes. Circ Res. 1996 Oct;79(4):887–897. doi: 10.1161/01.res.79.4.887. [DOI] [PubMed] [Google Scholar]
  21. Knape J. T., van Zwieten P. A. Positive chronotropic activity of angiotensin II in the pithed normotensive rat is primarily due to activation of cardiac beta 1-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 1988 Aug;338(2):185–190. doi: 10.1007/BF00174868. [DOI] [PubMed] [Google Scholar]
  22. Lee Y. A., Liang C. S., Lee M. A., Lindpaintner K. Local stress, not systemic factors, regulate gene expression of the cardiac renin-angiotensin system in vivo: a comprehensive study of all its components in the dog. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11035–11040. doi: 10.1073/pnas.93.20.11035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lopez J. J., Lorell B. H., Ingelfinger J. R., Weinberg E. O., Schunkert H., Diamant D., Tang S. S. Distribution and function of cardiac angiotensin AT1- and AT2-receptor subtypes in hypertrophied rat hearts. Am J Physiol. 1994 Aug;267(2 Pt 2):H844–H852. doi: 10.1152/ajpheart.1994.267.2.H844. [DOI] [PubMed] [Google Scholar]
  24. Masaki H., Sato Y., Luo W., Kranias E. G., Yatani A. Phospholamban deficiency alters inactivation kinetics of L-type Ca2+ channels in mouse ventricular myocytes. Am J Physiol. 1997 Feb;272(2 Pt 2):H606–H612. doi: 10.1152/ajpheart.1997.272.2.H606. [DOI] [PubMed] [Google Scholar]
  25. Meggs L. G., Coupet J., Huang H., Cheng W., Li P., Capasso J. M., Homcy C. J., Anversa P. Regulation of angiotensin II receptors on ventricular myocytes after myocardial infarction in rats. Circ Res. 1993 Jun;72(6):1149–1162. doi: 10.1161/01.res.72.6.1149. [DOI] [PubMed] [Google Scholar]
  26. Millan M. A., Carvallo P., Izumi S., Zemel S., Catt K. J., Aguilera G. Novel sites of expression of functional angiotensin II receptors in the late gestation fetus. Science. 1989 Jun 16;244(4910):1340–1342. doi: 10.1126/science.2734613. [DOI] [PubMed] [Google Scholar]
  27. Nakajima M., Hutchinson H. G., Fujinaga M., Hayashida W., Morishita R., Zhang L., Horiuchi M., Pratt R. E., Dzau V. J. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10663–10667. doi: 10.1073/pnas.92.23.10663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nakajima M., Mukoyama M., Pratt R. E., Horiuchi M., Dzau V. J. Cloning of cDNA and analysis of the gene for mouse angiotensin II type 2 receptor. Biochem Biophys Res Commun. 1993 Dec 15;197(2):393–399. doi: 10.1006/bbrc.1993.2492. [DOI] [PubMed] [Google Scholar]
  29. Nakashima A., Angus J. A., Johnston C. I. Chronotropic effects of angiotensin I, angiotensin II, bradykinin and vasopressin in guinea pig atria. Eur J Pharmacol. 1982 Jul 16;81(3):479–485. doi: 10.1016/0014-2999(82)90113-3. [DOI] [PubMed] [Google Scholar]
  30. Nio Y., Matsubara H., Murasawa S., Kanasaki M., Inada M. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest. 1995 Jan;95(1):46–54. doi: 10.1172/JCI117675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nozawa Y., Haruno A., Oda N., Yamasaki Y., Matsuura N., Yamada S., Inabe K., Kimura R., Suzuki H., Hoshino T. Angiotensin II receptor subtypes in bovine and human ventricular myocardium. J Pharmacol Exp Ther. 1994 Aug;270(2):566–571. [PubMed] [Google Scholar]
  32. Nuss H. B., Marban E. Electrophysiological properties of neonatal mouse cardiac myocytes in primary culture. J Physiol. 1994 Sep 1;479(Pt 2):265–279. doi: 10.1113/jphysiol.1994.sp020294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ohkubo N., Matsubara H., Nozawa Y., Mori Y., Murasawa S., Kijima K., Maruyama K., Masaki H., Tsutumi Y., Shibazaki Y. Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation. 1997 Dec 2;96(11):3954–3962. doi: 10.1161/01.cir.96.11.3954. [DOI] [PubMed] [Google Scholar]
  34. Pitt B., Segal R., Martinez F. A., Meurers G., Cowley A. J., Thomas I., Deedwania P. C., Ney D. E., Snavely D. B., Chang P. I. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE) Lancet. 1997 Mar 15;349(9054):747–752. doi: 10.1016/s0140-6736(97)01187-2. [DOI] [PubMed] [Google Scholar]
  35. Regitz-Zagrosek V., Friedel N., Heymann A., Bauer P., Neuss M., Rolfs A., Steffen C., Hildebrandt A., Hetzer R., Fleck E. Regulation, chamber localization, and subtype distribution of angiotensin II receptors in human hearts. Circulation. 1995 Mar 1;91(5):1461–1471. doi: 10.1161/01.cir.91.5.1461. [DOI] [PubMed] [Google Scholar]
  36. Schunkert H., Dzau V. J., Tang S. S., Hirsch A. T., Apstein C. S., Lorell B. H. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest. 1990 Dec;86(6):1913–1920. doi: 10.1172/JCI114924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stoll M., Steckelings U. M., Paul M., Bottari S. P., Metzger R., Unger T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest. 1995 Feb;95(2):651–657. doi: 10.1172/JCI117710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Subramaniam A., Jones W. K., Gulick J., Wert S., Neumann J., Robbins J. Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J Biol Chem. 1991 Dec 25;266(36):24613–24620. [PubMed] [Google Scholar]
  39. Suzuki J., Matsubara H., Urakami M., Inada M. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res. 1993 Sep;73(3):439–447. doi: 10.1161/01.res.73.3.439. [DOI] [PubMed] [Google Scholar]
  40. Voelker J. R., Cobb S. L., Bowsher R. R. Improved HPLC-radioimmunoassay for quantifying angiotensin II in plasma. Clin Chem. 1994 Aug;40(8):1537–1543. [PubMed] [Google Scholar]
  41. Yamada T., Horiuchi M., Dzau V. J. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):156–160. doi: 10.1073/pnas.93.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang J., Pratt R. E. The AT2 receptor selectively associates with Gialpha2 and Gialpha3 in the rat fetus. J Biol Chem. 1996 Jun 21;271(25):15026–15033. [PubMed] [Google Scholar]
  43. van Kesteren C. A., van Heugten H. A., Lamers J. M., Saxena P. R., Schalekamp M. A., Danser A. H. Angiotensin II-mediated growth and antigrowth effects in cultured neonatal rat cardiac myocytes and fibroblasts. J Mol Cell Cardiol. 1997 Aug;29(8):2147–2157. doi: 10.1006/jmcc.1997.0448. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES