Abstract
In humans, autologous transplants derived from bone marrow (BM) usually engraft more slowly than transplants derived from mobilized peripheral blood. Allogeneic BM transplants show a further delay in engraftment and have an apparent requirement for donor T cells to facilitate engraftment. In mice, Thy-1.1(lo)Lin-/loSca-1+ hematopoietic stem cells (HSCs) are the principal population in BM which is responsible for engraftment in syngeneic hosts at radioprotective doses, and higher doses of HSCs can radioprotect an allogeneic host in the absence of donor T cells. Using the mouse as a preclinical model, we wished to test to what extent engraftment kinetics was a function of HSC content, and whether at high doses of c-Kit+Thy-1.1(lo)Lin-/loSca-1+ (KTLS) cells rapid allogeneic engraftment could also be achieved. Here we demonstrate that engraftment kinetics varied greatly over the range of KTLS doses tested (100-10,000 cells), with the most rapid engraftment being obtained with a dose of 5,000 or more syngeneic cells. Mobilized splenic KTLS cells and the rhodamine 123(lo) subset of KTLS cells were also able to engraft rapidly. Higher doses of allogeneic cells were needed to produce equivalent engraftment kinetics. This suggests that in mice even fully allogeneic barriers can be traversed with high doses of HSCs, and that in humans it may be possible to obtain rapid engraftment in an allogeneic context with clinically achievable doses of purified HSCs.
Full Text
The Full Text of this article is available as a PDF (217.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bertoncello I., Hodgson G. S., Bradley T. R. Multiparameter analysis of transplantable hemopoietic stem cells: I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of rhodamine-123 fluorescence. Exp Hematol. 1985 Nov;13(10):999–1006. [PubMed] [Google Scholar]
- Chaudhary P. M., Roninson I. B. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell. 1991 Jul 12;66(1):85–94. doi: 10.1016/0092-8674(91)90141-k. [DOI] [PubMed] [Google Scholar]
- Heimfeld S., Hudak S., Weissman I., Rennick D. The in vitro response of phenotypically defined mouse stem cells and myeloerythroid progenitors to single or multiple growth factors. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9902–9906. doi: 10.1073/pnas.88.21.9902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mavroudis D., Read E., Cottler-Fox M., Couriel D., Molldrem J., Carter C., Yu M., Dunbar C., Barrett J. CD34+ cell dose predicts survival, posttransplant morbidity, and rate of hematologic recovery after allogeneic marrow transplants for hematologic malignancies. Blood. 1996 Oct 15;88(8):3223–3229. [PubMed] [Google Scholar]
- Morrison S. J., Weissman I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994 Nov;1(8):661–673. doi: 10.1016/1074-7613(94)90037-x. [DOI] [PubMed] [Google Scholar]
- Morrison S. J., Wright D. E., Weissman I. L. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1908–1913. doi: 10.1073/pnas.94.5.1908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Negrin R. S., Kusnierz-Glaz C. R., Still B. J., Schriber J. R., Chao N. J., Long G. D., Hoyle C., Hu W. W., Horning S. J., Brown B. W. Transplantation of enriched and purged peripheral blood progenitor cells from a single apheresis product in patients with non-Hodgkin's lymphoma. Blood. 1995 Jun 1;85(11):3334–3341. [PubMed] [Google Scholar]
- Shizuru J. A., Jerabek L., Edwards C. T., Weissman I. L. Transplantation of purified hematopoietic stem cells: requirements for overcoming the barriers of allogeneic engraftment. Biol Blood Marrow Transplant. 1996 Feb;2(1):3–14. [PubMed] [Google Scholar]
- Spangrude G. J., Brooks D. M., Tumas D. B. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood. 1995 Feb 15;85(4):1006–1016. [PubMed] [Google Scholar]
- Spangrude G. J., Heimfeld S., Weissman I. L. Purification and characterization of mouse hematopoietic stem cells. Science. 1988 Jul 1;241(4861):58–62. doi: 10.1126/science.2898810. [DOI] [PubMed] [Google Scholar]
- Spangrude G. J., Johnson G. R. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7433–7437. doi: 10.1073/pnas.87.19.7433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szilvassy S. J., Weller K. P., Chen B., Juttner C. A., Tsukamoto A., Hoffman R. Partially differentiated ex vivo expanded cells accelerate hematologic recovery in myeloablated mice transplanted with highly enriched long-term repopulating stem cells. Blood. 1996 Nov 1;88(9):3642–3653. [PubMed] [Google Scholar]
- Uchida N., Aguila H. L., Fleming W. H., Jerabek L., Weissman I. L. Rapid and sustained hematopoietic recovery in lethally irradiated mice transplanted with purified Thy-1.1lo Lin-Sca-1+ hematopoietic stem cells. Blood. 1994 Jun 15;83(12):3758–3779. [PubMed] [Google Scholar]
- Uchida N., Combs J., Chen S., Zanjani E., Hoffman R., Tsukamoto A. Primitive human hematopoietic cells displaying differential efflux of the rhodamine 123 dye have distinct biological activities. Blood. 1996 Aug 15;88(4):1297–1305. [PubMed] [Google Scholar]
- Uchida N., He D., Friera A. M., Reitsma M., Sasaki D., Chen B., Tsukamoto A. The unexpected G0/G1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood. Blood. 1997 Jan 15;89(2):465–472. [PubMed] [Google Scholar]
- Uchida N., Weissman I. L. Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin- Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J Exp Med. 1992 Jan 1;175(1):175–184. doi: 10.1084/jem.175.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Udomsakdi C., Eaves C. J., Sutherland H. J., Lansdorp P. M. Separation of functionally distinct subpopulations of primitive human hematopoietic cells using rhodamine-123. Exp Hematol. 1991 Jun;19(5):338–342. [PubMed] [Google Scholar]
- Yu Y. Y., Kumar V., Bennett M. Murine natural killer cells and marrow graft rejection. Annu Rev Immunol. 1992;10:189–213. doi: 10.1146/annurev.iy.10.040192.001201. [DOI] [PubMed] [Google Scholar]
- Zijlmans J. M., Visser J. W., Kleiverda K., Kluin P. M., Willemze R., Fibbe W. E. Modification of rhodamine staining allows identification of hematopoietic stem cells with preferential short-term or long-term bone marrow-repopulating ability. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8901–8905. doi: 10.1073/pnas.92.19.8901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerman T. M., Lee W. J., Bender J. G., Mick R., Williams S. F. Quantitative CD34 analysis may be used to guide peripheral blood stem cell harvests. Bone Marrow Transplant. 1995 Mar;15(3):439–444. [PubMed] [Google Scholar]
