Abstract
Acute lung injury is a frequent and treatment-limiting consequence of therapy with hyperoxic gas mixtures. To determine if IL-11 is protective in oxygen toxicity, we compared the effects of 100% O2 on transgenic mice that overexpress IL-11 in the lung and transgene (-) controls. IL-11 markedly enhanced survival in 100% O2 with 100% of transgene (-) animals dying within 72-96 h and > 90% of transgene (+) animals surviving for more than 10 d. This protection was associated with markedly diminished alveolar-capillary protein leak, endothelial and epithelial membrane injury, lipid peroxidation, and pulmonary neutrophil recruitment. Significant differences in copper zinc superoxide dismutase and catalase activities were not noted and the levels of total, reduced and oxidized glutathione were similar in transgene (+) and (-) animals. Glutathione reductase, glutathione peroxidase, and manganese superoxide dismutase activities were slightly higher in transgene (+) as versus (-) mice after 100% O2 exposure, and IL-11 diminished hyperoxia-induced expression of IL-1 and TNF. Hyperoxia also caused cell death with DNA fragmentation in the lungs of transgene (-) animals and IL-11 markedly diminished this cell death response. These studies demonstrate that IL-11 markedly diminishes hyperoxic lung injury. They also demonstrate this protection is associated with small changes in lung antioxidants, diminished hyperoxia-induced IL-1 and TNF production, and markedly suppressed hyperoxia-induced DNA fragmentation.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamson I. Y., Bowden D. H., Wyatt J. P. Oxygen poisoning in mice. Ultrastructural and surfactant studies during exposure and recovery. Arch Pathol. 1970 Nov;90(5):463–472. [PubMed] [Google Scholar]
- Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
- Barazzone C., Tacchini-Cottier F., Vesin C., Rochat A. F., Piguet P. F. Hyperoxia induces platelet activation and lung sequestration: an event dependent on tumor necrosis factor-alpha and CD11a. Am J Respir Cell Mol Biol. 1996 Jul;15(1):107–114. doi: 10.1165/ajrcmb.15.1.8679214. [DOI] [PubMed] [Google Scholar]
- Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
- Bellomo G., Mirabelli F., DiMonte D., Richelmi P., Thor H., Orrenius C., Orrenius S. Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-naphthoquinone). Biochem Pharmacol. 1987 Apr 15;36(8):1313–1320. doi: 10.1016/0006-2952(87)90087-6. [DOI] [PubMed] [Google Scholar]
- Canada A. T., Herman L. A., Young S. L. An age-related difference in hyperoxia lethality: role of lung antioxidant defense mechanisms. Am J Physiol. 1995 Apr;268(4 Pt 1):L539–L545. doi: 10.1152/ajplung.1995.268.4.L539. [DOI] [PubMed] [Google Scholar]
- Chaudiere J., Tappel A. L. Purification and characterization of selenium-glutathione peroxidase from hamster liver. Arch Biochem Biophys. 1983 Oct 15;226(2):448–457. doi: 10.1016/0003-9861(83)90314-4. [DOI] [PubMed] [Google Scholar]
- Cohen J. J. Apoptosis and its regulation. Adv Exp Med Biol. 1996;406:11–20. doi: 10.1007/978-1-4899-0274-0_2. [DOI] [PubMed] [Google Scholar]
- Crapo J. D., Barry B. E., Foscue H. A., Shelburne J. Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am Rev Respir Dis. 1980 Jul;122(1):123–143. doi: 10.1164/arrd.1980.122.1.123. [DOI] [PubMed] [Google Scholar]
- Crapo J. D. Morphologic changes in pulmonary oxygen toxicity. Annu Rev Physiol. 1986;48:721–731. doi: 10.1146/annurev.ph.48.030186.003445. [DOI] [PubMed] [Google Scholar]
- Cruikshank W. W., Center D. M., Nisar N., Wu M., Natke B., Theodore A. C., Kornfeld H. Molecular and functional analysis of a lymphocyte chemoattractant factor: association of biologic function with CD4 expression. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5109–5113. doi: 10.1073/pnas.91.11.5109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis W. B., Rennard S. I., Bitterman P. B., Gadek J. E., Sun X. H., Wewers M., Keogh B. A., Crystal R. G. Pulmonary oxygen toxicity. Bronchoalveolar lavage demonstration of early parameters of alveolitis. Chest. 1983 May;83(5 Suppl):35S–35S. doi: 10.1378/chest.83.5.35sb. [DOI] [PubMed] [Google Scholar]
- Del Maestro R. F., Björk J., Arfors K. E. Increase in microvascular permeability induced by enzymatically generated free radicals. I. In vivo study. Microvasc Res. 1981 Nov;22(3):239–254. doi: 10.1016/0026-2862(81)90095-9. [DOI] [PubMed] [Google Scholar]
- Dong Z., Saikumar P., Weinberg J. M., Venkatachalam M. A. Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am J Pathol. 1997 Nov;151(5):1205–1213. [PMC free article] [PubMed] [Google Scholar]
- Du X. X., Doerschuk C. M., Orazi A., Williams D. A. A bone marrow stromal-derived growth factor, interleukin-11, stimulates recovery of small intestinal mucosal cells after cytoablative therapy. Blood. 1994 Jan 1;83(1):33–37. [PubMed] [Google Scholar]
- Du X. X., Williams D. A. Interleukin-11: a multifunctional growth factor derived from the hematopoietic microenvironment. Blood. 1994 Apr 15;83(8):2023–2030. [PubMed] [Google Scholar]
- Du X., Liu Q., Yang Z., Orazi A., Rescorla F. J., Grosfeld J. L., Williams D. A. Protective effects of interleukin-11 in a murine model of ischemic bowel necrosis. Am J Physiol. 1997 Mar;272(3 Pt 1):G545–G552. doi: 10.1152/ajpgi.1997.272.3.G545. [DOI] [PubMed] [Google Scholar]
- Esterbauer H., Cheeseman K. H. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407–421. doi: 10.1016/0076-6879(90)86134-h. [DOI] [PubMed] [Google Scholar]
- Flohé L., Günzler W. A. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–121. doi: 10.1016/s0076-6879(84)05015-1. [DOI] [PubMed] [Google Scholar]
- Fox R. B., Hoidal J. R., Brown D. M., Repine J. E. Pulmonary inflammation due to oxygen toxicity: involvement of chemotactic factors and polymorphonuclear leukocytes. Am Rev Respir Dis. 1981 May;123(5):521–523. doi: 10.1164/arrd.1981.123.5.521. [DOI] [PubMed] [Google Scholar]
- Freeman B. A., Crapo J. D. Biology of disease: free radicals and tissue injury. Lab Invest. 1982 Nov;47(5):412–426. [PubMed] [Google Scholar]
- Gaullier J. M., Lafontant P., Valla A., Bazin M., Giraud M., Santus R. Glutathione peroxidase and glutathione reductase activities towards glutathione-derived antioxidants. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1668–1674. doi: 10.1006/bbrc.1994.2378. [DOI] [PubMed] [Google Scholar]
- Gossen M., Freundlieb S., Bender G., Müller G., Hillen W., Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995 Jun 23;268(5218):1766–1769. doi: 10.1126/science.7792603. [DOI] [PubMed] [Google Scholar]
- Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
- Hamburg D. C., Tonoki H., Welty S. E., Geske R. S., Montgomery C. A., Hansen T. N. Endotoxin induces glutathione reductase activity in lungs of mice. Pediatr Res. 1994 Mar;35(3):311–315. doi: 10.1203/00006450-199403000-00006. [DOI] [PubMed] [Google Scholar]
- Hayatdavoudi G., O'Neil J. J., Barry B. E., Freeman B. A., Crapo J. D. Pulmonary injury in rats following continuous exposure to 60% O2 for 7 days. J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1220–1231. doi: 10.1152/jappl.1981.51.5.1220. [DOI] [PubMed] [Google Scholar]
- Heffner J. E., Repine J. E. Pulmonary strategies of antioxidant defense. Am Rev Respir Dis. 1989 Aug;140(2):531–554. doi: 10.1164/ajrccm/140.2.531. [DOI] [PubMed] [Google Scholar]
- Hinshaw D. B., Burger J. M., Armstrong B. C., Hyslop P. A. Mechanism of endothelial cell shape change in oxidant injury. J Surg Res. 1989 Apr;46(4):339–349. doi: 10.1016/0022-4804(89)90199-6. [DOI] [PubMed] [Google Scholar]
- Ho Y. S., Dey M. S., Crapo J. D. Antioxidant enzyme expression in rat lungs during hyperoxia. Am J Physiol. 1996 May;270(5 Pt 1):L810–L818. doi: 10.1152/ajplung.1996.270.5.L810. [DOI] [PubMed] [Google Scholar]
- Jenkinson S. G. Pulmonary oxygen toxicity. Clin Chest Med. 1982 Jan;3(1):109–119. [PubMed] [Google Scholar]
- Kazzaz J. A., Xu J., Palaia T. A., Mantell L., Fein A. M., Horowitz S. Cellular oxygen toxicity. Oxidant injury without apoptosis. J Biol Chem. 1996 Jun 21;271(25):15182–15186. doi: 10.1074/jbc.271.25.15182. [DOI] [PubMed] [Google Scholar]
- Keeney S. E., Mathews M. J., Haque A. K., Rudloff H. E., Schmalstieg F. C. Oxygen-induced lung injury in the guinea pig proceeds through CD18-independent mechanisms. Am J Respir Crit Care Med. 1994 Feb;149(2 Pt 1):311–319. doi: 10.1164/ajrccm.149.2.7905767. [DOI] [PubMed] [Google Scholar]
- Keeney S. E., Mathews M. J., Haque A. K., Schmalstieg F. C. Comparison of pulmonary neutrophils in the adult and neonatal rat after hyperoxia. Pediatr Res. 1995 Dec;38(6):857–863. doi: 10.1203/00006450-199512000-00006. [DOI] [PubMed] [Google Scholar]
- Kroemer G., Petit P., Zamzami N., Vayssière J. L., Mignotte B. The biochemistry of programmed cell death. FASEB J. 1995 Oct;9(13):1277–1287. doi: 10.1096/fasebj.9.13.7557017. [DOI] [PubMed] [Google Scholar]
- Lee C. Y., Pastore J. N., Tang G., Tsan M. F. Cellular distribution of pulmonary Mn and CuZn superoxide dismutase: effect of hyperoxia and interleukin-1. J Histochem Cytochem. 1994 Sep;42(9):1201–1205. doi: 10.1177/42.9.8064127. [DOI] [PubMed] [Google Scholar]
- Leng S. X., Elias J. A. Interleukin-11 inhibits macrophage interleukin-12 production. J Immunol. 1997 Sep 1;159(5):2161–2168. [PubMed] [Google Scholar]
- Mikawa K., Nishina K., Maekawa N., Obara H. Attenuation of hyperoxic lung injury in rabbits with superoxide dismutase: effects on inflammatory mediators. Acta Anaesthesiol Scand. 1995 Apr;39(3):317–322. doi: 10.1111/j.1399-6576.1995.tb04069.x. [DOI] [PubMed] [Google Scholar]
- O'Brien-Ladner A. R., Nelson M. E., Cowley B. D., Jr, Bailey K., Wesselius L. J. Hyperoxia amplifies TNF-alpha production in LPS-stimulated human alveolar macrophages. Am J Respir Cell Mol Biol. 1995 Mar;12(3):275–279. doi: 10.1165/ajrcmb.12.3.7873193. [DOI] [PubMed] [Google Scholar]
- Ono M., Kohda H., Kawaguchi T., Ohhira M., Sekiya C., Namiki M., Takeyasu A., Taniguchi N. Induction of Mn-superoxide dismutase by tumor necrosis factor, interleukin-1 and interleukin-6 in human hepatoma cells. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1100–1107. doi: 10.1016/0006-291x(92)91845-h. [DOI] [PubMed] [Google Scholar]
- Paul S. R., Bennett F., Calvetti J. A., Kelleher K., Wood C. R., O'Hara R. M., Jr, Leary A. C., Sibley B., Clark S. C., Williams D. A. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7512–7516. doi: 10.1073/pnas.87.19.7512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson R. L., Bozza M. M., Dorner A. J. Interleukin-11 induces intestinal epithelial cell growth arrest through effects on retinoblastoma protein phosphorylation. Am J Pathol. 1996 Sep;149(3):895–902. [PMC free article] [PubMed] [Google Scholar]
- Piantadosi C. A., Fracica P. J., Duhaylongsod F. G., Huang Y. C., Welty-Wolf K. E., Crapo J. D., Young S. L. Artificial surfactant attenuates hyperoxic lung injury in primates. II. Morphometric analysis. J Appl Physiol (1985) 1995 May;78(5):1823–1831. doi: 10.1152/jappl.1995.78.5.1823. [DOI] [PubMed] [Google Scholar]
- Qiu B. S., Pfeiffer C. J., Keith J. C., Jr Protection by recombinant human interleukin-11 against experimental TNB-induced colitis in rats. Dig Dis Sci. 1996 Aug;41(8):1625–1630. doi: 10.1007/BF02087911. [DOI] [PubMed] [Google Scholar]
- Ray P., Tang W., Wang P., Homer R., Kuhn C., 3rd, Flavell R. A., Elias J. A. Regulated overexpression of interleukin 11 in the lung. Use to dissociate development-dependent and -independent phenotypes. J Clin Invest. 1997 Nov 15;100(10):2501–2511. doi: 10.1172/JCI119792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redlich C. A., Gao X., Rockwell S., Kelley M., Elias J. A. IL-11 enhances survival and decreases TNF production after radiation-induced thoracic injury. J Immunol. 1996 Aug 15;157(4):1705–1710. [PubMed] [Google Scholar]
- Risberg B., Smith L., Ortenwall P. Oxygen radicals and lung injury. Acta Anaesthesiol Scand Suppl. 1991;95:106–118. doi: 10.1111/j.1399-6576.1991.tb03407.x. [DOI] [PubMed] [Google Scholar]
- Sies H. Oxidative stress: from basic research to clinical application. Am J Med. 1991 Sep 30;91(3C):31S–38S. doi: 10.1016/0002-9343(91)90281-2. [DOI] [PubMed] [Google Scholar]
- Smith L. J. Hyperoxic lung injury: biochemical, cellular, and morphologic characterization in the mouse. J Lab Clin Med. 1985 Sep;106(3):269–278. [PubMed] [Google Scholar]
- Tang W., Geba G. P., Zheng T., Ray P., Homer R. J., Kuhn C., 3rd, Flavell R. A., Elias J. A. Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. J Clin Invest. 1996 Dec 15;98(12):2845–2853. doi: 10.1172/JCI119113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tappel A. L. Lipid peroxidation damage to cell components. Fed Proc. 1973 Aug;32(8):1870–1874. [PubMed] [Google Scholar]
- Trepicchio W. L., Bozza M., Pedneault G., Dorner A. J. Recombinant human IL-11 attenuates the inflammatory response through down-regulation of proinflammatory cytokine release and nitric oxide production. J Immunol. 1996 Oct 15;157(8):3627–3634. [PubMed] [Google Scholar]
- Tsan M. F., Lee C. Y., White J. E. Interleukin 1 protects rats against oxygen toxicity. J Appl Physiol (1985) 1991 Aug;71(2):688–697. doi: 10.1152/jappl.1991.71.2.688. [DOI] [PubMed] [Google Scholar]
- Tsan M. F., White J. E., Del Vecchio P. J., Shaffer J. B. IL-6 enhances TNF-alpha- and IL-1-induced increase of Mn superoxide dismutase mRNA and O2 tolerance. Am J Physiol. 1992 Jul;263(1 Pt 1):L22–L26. doi: 10.1152/ajplung.1992.263.1.L22. [DOI] [PubMed] [Google Scholar]
- Tsan M. F., White J. E. Interleukin-1alpha induced protection against pulmonary oxygen toxicity. Am J Physiol. 1994 Mar;266(3 Pt 1):L316–L317. doi: 10.1152/ajplung.1994.266.3.L316. [DOI] [PubMed] [Google Scholar]
- Tsan M. F., White J. E., Michelsen P. B., Wong G. H. Pulmonary O2 toxicity: role of endogenous tumor necrosis factor. Exp Lung Res. 1995 Jul-Aug;21(4):589–597. doi: 10.3109/01902149509031761. [DOI] [PubMed] [Google Scholar]
- Ueda N., Walker P. D., Hsu S. M., Shah S. V. Activation of a 15-kDa endonuclease in hypoxia/reoxygenation injury without morphologic features of apoptosis. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7202–7206. doi: 10.1073/pnas.92.16.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visner G. A., Chesrown S. E., Monnier J., Ryan U. S., Nick H. S. Regulation of manganese superoxide dismutase: IL-1 and TNF induction in pulmonary artery and microvascular endothelial cells. Biochem Biophys Res Commun. 1992 Oct 15;188(1):453–462. doi: 10.1016/0006-291x(92)92406-n. [DOI] [PubMed] [Google Scholar]
- Zhong L. T., Sarafian T., Kane D. J., Charles A. C., Mah S. P., Edwards R. H., Bredesen D. E. bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4533–4537. doi: 10.1073/pnas.90.10.4533. [DOI] [PMC free article] [PubMed] [Google Scholar]
