Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 15;101(10):2065–2071. doi: 10.1172/JCI2338

LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria.

N Lamping 1, R Dettmer 1, N W Schröder 1, D Pfeil 1, W Hallatschek 1, R Burger 1, R R Schumann 1
PMCID: PMC508794  PMID: 9593762

Abstract

LPS-binding protein (LBP) recognizes bacterial LPS and transfers it to CD14, thereby enhancing host cell stimulation, eventually resulting in pathogenic states such as septic shock. Recently, LBP also was shown to detoxify LPS by transferring LPS into HDL particles in vitro. Thus, the predominant in vivo function of LBP has remained unclear. To investigate the biological activity of acute phase concentrations of recombinant murine LBP, high concentrations of LBP were investigated in vitro and in vivo. Although addition of low concentrations of LBP to a murine macrophage cell line enhanced LPS-induced TNF-alpha synthesis, acute phase concentrations of LBP blocked this effect in comparison to low-dose LBP. When injected into mice intraperitoneally, LBP inhibited LPS-mediated cytokine release and prevented hepatic failure resulting in a significantly decreased mortality rate in LPS-challenged and D-galactosamine-sensitized mice, as well as in a murine model of bacteremia. These results complement a recent study revealing LBP-deficient mice to be dramatically more susceptible to an intraperitoneal Salmonella infection as compared with normal mice. We conclude that acute phase LBP has a protective effect against LPS and bacterial infection and may represent a physiologic defense mechanism against infection. Despite the limitations of any murine sepsis model, the results shown may imply that LBP could have beneficial effects during gram-negative peritonitis in humans.

Full Text

The Full Text of this article is available as a PDF (186.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson S. L., Wu H. M., Williams R. E., Der K., Ottah N., Little R., Gazzano-Santoro H., Theofan G., Bauer R., Leigh S. Biochemical characterization of recombinant fusions of lipopolysaccharide binding protein and bactericidal/permeability-increasing protein. Implications in biological activity. J Biol Chem. 1997 Jan 24;272(4):2149–2155. doi: 10.1074/jbc.272.4.2149. [DOI] [PubMed] [Google Scholar]
  2. Alexander J. W., Boyce S. T., Babcock G. F., Gianotti L., Peck M. D., Dunn D. L., Pyles T., Childress C. P., Ash S. K. The process of microbial translocation. Ann Surg. 1990 Oct;212(4):496–512. doi: 10.1097/00000658-199010000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amura C. R., Chen L. C., Hirohashi N., Lei M. G., Morrison D. C. Two functionally independent pathways for lipopolysaccharide-dependent activation of mouse peritoneal macrophages. J Immunol. 1997 Nov 15;159(10):5079–5083. [PubMed] [Google Scholar]
  4. Beutler B., Mahoney J., Le Trang N., Pekala P., Cerami A. Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med. 1985 May 1;161(5):984–995. doi: 10.1084/jem.161.5.984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calvano S. E., Thompson W. A., Marra M. N., Coyle S. M., de Riesthal H. F., Trousdale R. K., Barie P. S., Scott R. W., Moldawer L. L., Lowry S. F. Changes in polymorphonuclear leukocyte surface and plasma bactericidal/permeability-increasing protein and plasma lipopolysaccharide binding protein during endotoxemia or sepsis. Arch Surg. 1994 Feb;129(2):220–226. doi: 10.1001/archsurg.1994.01420260116016. [DOI] [PubMed] [Google Scholar]
  6. Ferrero E., Jiao D., Tsuberi B. Z., Tesio L., Rong G. W., Haziot A., Goyert S. M. Transgenic mice expressing human CD14 are hypersensitive to lipopolysaccharide. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2380–2384. doi: 10.1073/pnas.90.6.2380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. From the bench to the bedside: the future of sepsis research. Executive summary of an American College of Chest Physicians, National Institute of Allergy and Infectious Disease, and National Heart, Lung, and Blood Institute Workshop. Chest. 1997 Mar;111(3):744–753. [PubMed] [Google Scholar]
  8. Froon A. H., Dentener M. A., Greve J. W., Ramsay G., Buurman W. A. Lipopolysaccharide toxicity-regulating proteins in bacteremia. J Infect Dis. 1995 May;171(5):1250–1257. doi: 10.1093/infdis/171.5.1250. [DOI] [PubMed] [Google Scholar]
  9. Galanos C., Freudenberg M. A., Reutter W. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5939–5943. doi: 10.1073/pnas.76.11.5939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gallay P., Barras C., Tobias P. S., Calandra T., Glauser M. P., Heumann D. Lipopolysaccharide (LPS)-binding protein in human serum determines the tumor necrosis factor response of monocytes to LPS. J Infect Dis. 1994 Nov;170(5):1319–1322. doi: 10.1093/infdis/170.5.1319. [DOI] [PubMed] [Google Scholar]
  11. Gallay P., Heumann D., Le Roy D., Barras C., Glauser M. P. Lipopolysaccharide-binding protein as a major plasma protein responsible for endotoxemic shock. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9935–9938. doi: 10.1073/pnas.90.21.9935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gallay P., Heumann D., Le Roy D., Barras C., Glauser M. P. Mode of action of anti-lipopolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7922–7926. doi: 10.1073/pnas.91.17.7922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gegner J. A., Ulevitch R. J., Tobias P. S. Lipopolysaccharide (LPS) signal transduction and clearance. Dual roles for LPS binding protein and membrane CD14. J Biol Chem. 1995 Mar 10;270(10):5320–5325. doi: 10.1074/jbc.270.10.5320. [DOI] [PubMed] [Google Scholar]
  14. Glauser M. P., Zanetti G., Baumgartner J. D., Cohen J. Septic shock: pathogenesis. Lancet. 1991 Sep 21;338(8769):732–736. doi: 10.1016/0140-6736(91)91452-z. [DOI] [PubMed] [Google Scholar]
  15. Grunwald U., Fan X., Jack R. S., Workalemahu G., Kallies A., Stelter F., Schütt C. Monocytes can phagocytose Gram-negative bacteria by a CD14-dependent mechanism. J Immunol. 1996 Nov 1;157(9):4119–4125. [PubMed] [Google Scholar]
  16. Hailman E., Lichenstein H. S., Wurfel M. M., Miller D. S., Johnson D. A., Kelley M., Busse L. A., Zukowski M. M., Wright S. D. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med. 1994 Jan 1;179(1):269–277. doi: 10.1084/jem.179.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hailman E., Vasselon T., Kelley M., Busse L. A., Hu M. C., Lichenstein H. S., Detmers P. A., Wright S. D. Stimulation of macrophages and neutrophils by complexes of lipopolysaccharide and soluble CD14. J Immunol. 1996 Jun 1;156(11):4384–4390. [PubMed] [Google Scholar]
  18. Haziot A., Ferrero E., Köntgen F., Hijiya N., Yamamoto S., Silver J., Stewart C. L., Goyert S. M. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity. 1996 Apr;4(4):407–414. doi: 10.1016/s1074-7613(00)80254-x. [DOI] [PubMed] [Google Scholar]
  19. Haziot A., Rong G. W., Lin X. Y., Silver J., Goyert S. M. Recombinant soluble CD14 prevents mortality in mice treated with endotoxin (lipopolysaccharide). J Immunol. 1995 Jun 15;154(12):6529–6532. [PubMed] [Google Scholar]
  20. Jack R. S., Fan X., Bernheiden M., Rune G., Ehlers M., Weber A., Kirsch G., Mentel R., Fürll B., Freudenberg M. Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature. 1997 Oct 16;389(6652):742–745. doi: 10.1038/39622. [DOI] [PubMed] [Google Scholar]
  21. Lamping N., Hoess A., Yu B., Park T. C., Kirschning C. J., Pfeil D., Reuter D., Wright S. D., Herrmann F., Schumann R. R. Effects of site-directed mutagenesis of basic residues (Arg 94, Lys 95, Lys 99) of lipopolysaccharide (LPS)-binding protein on binding and transfer of LPS and subsequent immune cell activation. J Immunol. 1996 Nov 15;157(10):4648–4656. [PubMed] [Google Scholar]
  22. Lehmann V., Freudenberg M. A., Galanos C. Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice. J Exp Med. 1987 Mar 1;165(3):657–663. doi: 10.1084/jem.165.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lengacher S., Jongeneel C. V., Le Roy D., Lee J. D., Kravchenko V., Ulevitch R. J., Glauser M. P., Heumann D. Reactivity of murine and human recombinant LPS-binding protein (LBP) within LPS and gram negative bacteria. J Inflamm. 1995;47(4):165–172. [PubMed] [Google Scholar]
  24. Levine D. M., Parker T. S., Donnelly T. M., Walsh A., Rubin A. L. In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):12040–12044. doi: 10.1073/pnas.90.24.12040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lottenberg R., Christensen U., Jackson C. M., Coleman P. L. Assay of coagulation proteases using peptide chromogenic and fluorogenic substrates. Methods Enzymol. 1981;80(Pt 100):341–361. doi: 10.1016/s0076-6879(81)80030-4. [DOI] [PubMed] [Google Scholar]
  26. Lynn W. A., Golenbock D. T. Lipopolysaccharide antagonists. Immunol Today. 1992 Jul;13(7):271–276. doi: 10.1016/0167-5699(92)90009-V. [DOI] [PubMed] [Google Scholar]
  27. Massamiri T., Tobias P. S., Curtiss L. K. Structural determinants for the interaction of lipopolysaccharide binding protein with purified high density lipoproteins: role of apolipoprotein A-I. J Lipid Res. 1997 Mar;38(3):516–525. [PubMed] [Google Scholar]
  28. Mathison J. C., Tobias P. S., Wolfson E., Ulevitch R. J. Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of gram-negative LPS. J Immunol. 1992 Jul 1;149(1):200–206. [PubMed] [Google Scholar]
  29. Morrison D. C., Ryan J. L. Endotoxins and disease mechanisms. Annu Rev Med. 1987;38:417–432. doi: 10.1146/annurev.me.38.020187.002221. [DOI] [PubMed] [Google Scholar]
  30. Opal S. M., Palardy J. E., Marra M. N., Fisher C. J., Jr, McKelligon B. M., Scott R. W. Relative concentrations of endotoxin-binding proteins in body fluids during infection. Lancet. 1994 Aug 13;344(8920):429–431. doi: 10.1016/s0140-6736(94)91767-1. [DOI] [PubMed] [Google Scholar]
  31. Pajkrt D., Doran J. E., Koster F., Lerch P. G., Arnet B., van der Poll T., ten Cate J. W., van Deventer S. J. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med. 1996 Nov 1;184(5):1601–1608. doi: 10.1084/jem.184.5.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pajkrt D., van Deventer S. J. The cellular response in sepsis. Curr Top Microbiol Immunol. 1996;216:119–132. doi: 10.1007/978-3-642-80186-0_6. [DOI] [PubMed] [Google Scholar]
  33. Parrillo J. E. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993 May 20;328(20):1471–1477. doi: 10.1056/NEJM199305203282008. [DOI] [PubMed] [Google Scholar]
  34. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  35. Raetz C. R., Ulevitch R. J., Wright S. D., Sibley C. H., Ding A., Nathan C. F. Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J. 1991 Sep;5(12):2652–2660. doi: 10.1096/fasebj.5.12.1916089. [DOI] [PubMed] [Google Scholar]
  36. Rietschel E. T., Brade H., Holst O., Brade L., Müller-Loennies S., Mamat U., Zähringer U., Beckmann F., Seydel U., Brandenburg K. Bacterial endotoxin: Chemical constitution, biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol. 1996;216:39–81. doi: 10.1007/978-3-642-80186-0_3. [DOI] [PubMed] [Google Scholar]
  37. Schumann R. R., Kirschning C. J., Unbehaun A., Aberle H. P., Knope H. P., Lamping N., Ulevitch R. J., Herrmann F. The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APRF/STAT/3 and other cytokine-inducible nuclear proteins. Mol Cell Biol. 1996 Jul;16(7):3490–3503. doi: 10.1128/mcb.16.7.3490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., Ulevitch R. J. Structure and function of lipopolysaccharide binding protein. Science. 1990 Sep 21;249(4975):1429–1431. doi: 10.1126/science.2402637. [DOI] [PubMed] [Google Scholar]
  39. Schäfer K., Schumann R. R., Stöteknuel S., Böhler J., Schollmeyer P., Dobos G. J. Lipopolysaccharide binding protein: a marker for intraperitoneal bacterial infection in patients with CAPD peritonitis. Adv Perit Dial. 1997;13:210–213. [PubMed] [Google Scholar]
  40. Szabó C., Southan G. J., Thiemermann C. Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12472–12476. doi: 10.1073/pnas.91.26.12472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tobias P. S., Soldau K., Gegner J. A., Mintz D., Ulevitch R. J. Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem. 1995 May 5;270(18):10482–10488. doi: 10.1074/jbc.270.18.10482. [DOI] [PubMed] [Google Scholar]
  42. Tobias P. S., Soldau K., Iovine N. M., Elsbach P., Weiss J. Lipopolysaccharide (LPS)-binding proteins BPI and LBP form different types of complexes with LPS. J Biol Chem. 1997 Jul 25;272(30):18682–18685. doi: 10.1074/jbc.272.30.18682. [DOI] [PubMed] [Google Scholar]
  43. Tobias P. S., Soldau K., Ulevitch R. J. Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. J Exp Med. 1986 Sep 1;164(3):777–793. doi: 10.1084/jem.164.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Troelstra A., Giepmans B. N., Van Kessel K. P., Lichenstein H. S., Verhoef J., Van Strijp J. A. Dual effects of soluble CD14 on LPS priming of neutrophils. J Leukoc Biol. 1997 Feb;61(2):173–178. doi: 10.1002/jlb.61.2.173. [DOI] [PubMed] [Google Scholar]
  45. Ulevitch R. J., Johnston A. R., Weinstein D. B. New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest. 1979 Nov;64(5):1516–1524. doi: 10.1172/JCI109610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ulevitch R. J., Tobias P. S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol. 1995;13:437–457. doi: 10.1146/annurev.iy.13.040195.002253. [DOI] [PubMed] [Google Scholar]
  47. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  48. Wurfel M. M., Kunitake S. T., Lichenstein H., Kane J. P., Wright S. D. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. J Exp Med. 1994 Sep 1;180(3):1025–1035. doi: 10.1084/jem.180.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wurfel M. M., Monks B. G., Ingalls R. R., Dedrick R. L., Delude R., Zhou D., Lamping N., Schumann R. R., Thieringer R., Fenton M. J. Targeted deletion of the lipopolysaccharide (LPS)-binding protein gene leads to profound suppression of LPS responses ex vivo, whereas in vivo responses remain intact. J Exp Med. 1997 Dec 15;186(12):2051–2056. doi: 10.1084/jem.186.12.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yu B., Wright S. D. Catalytic properties of lipopolysaccharide (LPS) binding protein. Transfer of LPS to soluble CD14. J Biol Chem. 1996 Feb 23;271(8):4100–4105. doi: 10.1074/jbc.271.8.4100. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES