Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jun 1;101(11):2406–2414. doi: 10.1172/JCI510

In vivo tumor transfection with superantigen plus cytokine genes induces tumor regression and prolongs survival in dogs with malignant melanoma.

S W Dow 1, R E Elmslie 1, A P Willson 1, L Roche 1, C Gorman 1, T A Potter 1
PMCID: PMC508830  PMID: 9616212

Abstract

In vivo transfection of established tumors with immunostimulatory genes can elicit antitumor immunity. Therefore, we evaluated the safety and efficacy of intratumoral injections of a bacterial superantigen with a cytokine gene in dogs with malignant melanoma, a spontaneous and highly malignant canine tumor. 26 dogs with melanoma were treated with lipid-complexed plasmid DNA encoding staphylococcal enterotoxin B and either GM-CSF or IL-2. Dogs were evaluated for treatment-associated toxicity, tumor responses, immunologic responses, and survival times. The overall response rate (complete or partial remissions) for all 26 dogs was 46% (12 of 26), and was highest in patients with smaller tumors. Toxicity was minimal or absent in all dogs. Injected tumors developed marked infiltrates of CD4+ and CD8+ T cells and macrophages, and tumor regression was associated with development of high levels of antitumor cytotoxic T lymphocyte activity in peripheral blood lymphocytes. Survival times for animals with stage III melanomas treated by intratumoral gene therapy were prolonged significantly compared with animals treated with surgical tumor excision only. Thus, local tumor transfection with superantigen and cytokine genes was capable of inducing both local and systemic antitumor immunity in an outbred animal with a spontaneously developing malignant tumor.

Full Text

The Full Text of this article is available as a PDF (377.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baskar S., Glimcher L., Nabavi N., Jones R. T., Ostrand-Rosenberg S. Major histocompatibility complex class II+B7-1+ tumor cells are potent vaccines for stimulating tumor rejection in tumor-bearing mice. J Exp Med. 1995 Feb 1;181(2):619–629. doi: 10.1084/jem.181.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boczkowski D., Nair S. K., Snyder D., Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med. 1996 Aug 1;184(2):465–472. doi: 10.1084/jem.184.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carlsson R., Fischer H., Sjögren H. O. Binding of staphylococcal enterotoxin A to accessory cells is a requirement for its ability to activate human T cells. J Immunol. 1988 Apr 15;140(8):2484–2488. [PubMed] [Google Scholar]
  4. Cobbold S., Metcalfe S. Monoclonal antibodies that define canine homologues of human CD antigens: summary of the First International Canine Leukocyte Antigen Workshop (CLAW). Tissue Antigens. 1994 Mar;43(3):137–154. doi: 10.1111/j.1399-0039.1994.tb02315.x. [DOI] [PubMed] [Google Scholar]
  5. Dohlsten M., Abrahmsén L., Björk P., Lando P. A., Hedlund G., Forsberg G., Brodin T., Gascoigne N. R., Förberg C., Lind P. Monoclonal antibody-superantigen fusion proteins: tumor-specific agents for T-cell-based tumor therapy. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8945–8949. doi: 10.1073/pnas.91.19.8945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dow S. W., Potter T. A. Expression of bacterial superantigen genes in mice induces localized mononuclear cell inflammatory responses. J Clin Invest. 1997 Jun 1;99(11):2616–2624. doi: 10.1172/JCI119450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dranoff G., Jaffee E., Lazenby A., Golumbek P., Levitsky H., Brose K., Jackson V., Hamada H., Pardoll D., Mulligan R. C. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3539–3543. doi: 10.1073/pnas.90.8.3539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fearon E. R., Pardoll D. M., Itaya T., Golumbek P., Levitsky H. I., Simons J. W., Karasuyama H., Vogelstein B., Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990 Feb 9;60(3):397–403. doi: 10.1016/0092-8674(90)90591-2. [DOI] [PubMed] [Google Scholar]
  9. Gansbacher B., Zier K., Daniels B., Cronin K., Bannerji R., Gilboa E. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med. 1990 Oct 1;172(4):1217–1224. doi: 10.1084/jem.172.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilbert C. F. Effects of staphylococcal enterotoxin B on the coagulation mechanism and leukocytic response in beagle dogs - a preliminary study. Thromb Diath Haemorrh. 1966 Dec 1;16(3):697–706. [PubMed] [Google Scholar]
  11. Golumbek P. T., Lazenby A. J., Levitsky H. I., Jaffee L. M., Karasuyama H., Baker M., Pardoll D. M. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science. 1991 Nov 1;254(5032):713–716. doi: 10.1126/science.1948050. [DOI] [PubMed] [Google Scholar]
  12. Harvey H. J., MacEwen E. G., Braun D., Patnaik A. K., Withrow S. J., Jongeward S. Prognostic criteria for dogs with oral melanoma. J Am Vet Med Assoc. 1981 Mar 15;178(6):580–582. [PubMed] [Google Scholar]
  13. Herman A., Kappler J. W., Marrack P., Pullen A. M. Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu Rev Immunol. 1991;9:745–772. doi: 10.1146/annurev.iy.09.040191.003525. [DOI] [PubMed] [Google Scholar]
  14. Kawakami Y., Eliyahu S., Jennings C., Sakaguchi K., Kang X., Southwood S., Robbins P. F., Sette A., Appella E., Rosenberg S. A. Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol. 1995 Apr 15;154(8):3961–3968. [PubMed] [Google Scholar]
  15. Kotzin B. L., Leung D. Y., Kappler J., Marrack P. Superantigens and their potential role in human disease. Adv Immunol. 1993;54:99–166. doi: 10.1016/s0065-2776(08)60534-9. [DOI] [PubMed] [Google Scholar]
  16. Lando P. A., Hedlund G., Dohlsten M., Kalland T. Bacterial superantigens as anti-tumour agents: induction of tumour cytotoxicity in human lymphocytes by staphylococcal enterotoxin A. Cancer Immunol Immunother. 1991;33(4):231–237. doi: 10.1007/BF01744942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leung D. Y., Gately M., Trumble A., Ferguson-Darnell B., Schlievert P. M., Picker L. J. Bacterial superantigens induce T cell expression of the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen, via stimulation of interleukin 12 production. J Exp Med. 1995 Feb 1;181(2):747–753. doi: 10.1084/jem.181.2.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Li Y., McGowan P., Hellström I., Hellström K. E., Chen L. Costimulation of tumor-reactive CD4+ and CD8+ T lymphocytes by B7, a natural ligand for CD28, can be used to treat established mouse melanoma. J Immunol. 1994 Jul 1;153(1):421–428. [PubMed] [Google Scholar]
  19. Lotze M. T. Cytokine gene therapy of cancer. Cancer J Sci Am. 1996 Mar-Apr;2(2):63–72. [PubMed] [Google Scholar]
  20. MacEwen E. G., Patnaik A. K., Harvey H. J., Hayes A. A., Matus R. Canine oral melanoma: comparison of surgery versus surgery plus Corynebacterium parvum. Cancer Invest. 1986;4(5):397–402. doi: 10.3109/07357908609017520. [DOI] [PubMed] [Google Scholar]
  21. Mandelboim O., Vadai E., Fridkin M., Katz-Hillel A., Feldman M., Berke G., Eisenbach L. Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nat Med. 1995 Nov;1(11):1179–1183. doi: 10.1038/nm1195-1179. [DOI] [PubMed] [Google Scholar]
  22. McCormack J. E., Kappler J., Marrack P. Stimulation with specific antigen can block superantigen-mediated deletion of T cells in vivo. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2086–2090. doi: 10.1073/pnas.91.6.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nabel G. J., Nabel E. G., Yang Z. Y., Fox B. A., Plautz G. E., Gao X., Huang L., Shu S., Gordon D., Chang A. E. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11307–11311. doi: 10.1073/pnas.90.23.11307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Newell K. A., Ellenhorn J. D., Bruce D. S., Bluestone J. A. In vivo T-cell activation by staphylococcal enterotoxin B prevents outgrowth of a malignant tumor. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1074–1078. doi: 10.1073/pnas.88.3.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ochi A., Migita K., Xu J., Siminovitch K. In vivo tumor immunotherapy by a bacterial superantigen. J Immunol. 1993 Sep 15;151(6):3180–3186. [PubMed] [Google Scholar]
  26. Pardoll D. M. New strategies for enhancing the immunogenicity of tumors. Curr Opin Immunol. 1993 Oct;5(5):719–725. doi: 10.1016/0952-7915(93)90127-e. [DOI] [PubMed] [Google Scholar]
  27. Parker S. E., Khatibi S., Margalith M., Anderson D., Yankauckas M., Gromkowski S. H., Latimer T., Lew D., Marquet M., Manthorpe M. Plasmid DNA gene therapy: studies with the human interleukin-2 gene in tumor cells in vitro and in the murine B16 melanoma model in vivo. Cancer Gene Ther. 1996 May-Jun;3(3):175–185. [PubMed] [Google Scholar]
  28. Pisetsky D. S. Immune activation by bacterial DNA: a new genetic code. Immunity. 1996 Oct;5(4):303–310. doi: 10.1016/s1074-7613(00)80256-3. [DOI] [PubMed] [Google Scholar]
  29. Plautz G. E., Yang Z. Y., Wu B. Y., Gao X., Huang L., Nabel G. J. Immunotherapy of malignancy by in vivo gene transfer into tumors. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4645–4649. doi: 10.1073/pnas.90.10.4645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Prohaska J. V., Kocandrle V., Houttuin E. Hemodynamic changes in response to staphylococcal exotoxin and enterotoxin. Bull Soc Int Chir. 1966 Nov-Dec;25(6):727–736. [PubMed] [Google Scholar]
  31. Rakhmilevich A. L., Turner J., Ford M. J., McCabe D., Sun W. H., Sondel P. M., Grota K., Yang N. S. Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6291–6296. doi: 10.1073/pnas.93.13.6291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rosenberg S. A., Packard B. S., Aebersold P. M., Solomon D., Topalian S. L., Toy S. T., Simon P., Lotze M. T., Yang J. C., Seipp C. A. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988 Dec 22;319(25):1676–1680. doi: 10.1056/NEJM198812223192527. [DOI] [PubMed] [Google Scholar]
  33. Shu S., Krinock R. A., Matsumura T., Sussman J. J., Fox B. A., Chang A. E., Terman D. S. Stimulation of tumor-draining lymph node cells with superantigenic staphylococcal toxins leads to the generation of tumor-specific effector T cells. J Immunol. 1994 Feb 1;152(3):1277–1288. [PubMed] [Google Scholar]
  34. Solodin I., Brown C. S., Bruno M. S., Chow C. Y., Jang E. H., Debs R. J., Heath T. D. A novel series of amphiphilic imidazolinium compounds for in vitro and in vivo gene delivery. Biochemistry. 1995 Oct 17;34(41):13537–13544. doi: 10.1021/bi00041a033. [DOI] [PubMed] [Google Scholar]
  35. Speiser D. E., Miranda R., Zakarian A., Bachmann M. F., McKall-Faienza K., Odermatt B., Hanahan D., Zinkernagel R. M., Ohashi P. S. Self antigens expressed by solid tumors Do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J Exp Med. 1997 Aug 29;186(5):645–653. doi: 10.1084/jem.186.5.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sriskandan S., Evans T. J., Cohen J. Bacterial superantigen-induced human lymphocyte responses are nitric oxide dependent and mediated by IL-12 and IFN-gamma. J Immunol. 1996 Apr 1;156(7):2430–2435. [PubMed] [Google Scholar]
  37. Sun W. H., Burkholder J. K., Sun J., Culp J., Turner J., Lu X. G., Pugh T. D., Ershler W. B., Yang N. S. In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2889–2893. doi: 10.1073/pnas.92.7.2889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Townsend S. E., Allison J. P. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science. 1993 Jan 15;259(5093):368–370. doi: 10.1126/science.7678351. [DOI] [PubMed] [Google Scholar]
  39. Van den Eynde B., Brichard V. G. New tumor antigens recognized by T cells. Curr Opin Immunol. 1995 Oct;7(5):674–681. doi: 10.1016/0952-7915(95)80076-x. [DOI] [PubMed] [Google Scholar]
  40. Young J. W., Inaba K. Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity. J Exp Med. 1996 Jan 1;183(1):7–11. doi: 10.1084/jem.183.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zhu N., Liggitt D., Liu Y., Debs R. Systemic gene expression after intravenous DNA delivery into adult mice. Science. 1993 Jul 9;261(5118):209–211. doi: 10.1126/science.7687073. [DOI] [PubMed] [Google Scholar]
  42. Zitvogel L., Mayordomo J. I., Tjandrawan T., DeLeo A. B., Clarke M. R., Lotze M. T., Storkus W. J. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med. 1996 Jan 1;183(1):87–97. doi: 10.1084/jem.183.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647. doi: 10.1126/science.1840703. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES