Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jun 15;101(12):2761–2767. doi: 10.1172/JCI1909

Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications.

F Döring 1, J Walter 1, J Will 1, M Föcking 1, M Boll 1, S Amasheh 1, W Clauss 1, H Daniel 1
PMCID: PMC508867  PMID: 9637710

Abstract

Delta-aminolevulinic acid (ALA) is the precursor of porphyrin synthesis and has been recently used in vitro and in clinical studies as an endogenous photosensitizer for photodynamic therapy in the treatment of various tumors. For this purpose, ALA is given topically, systemically, or orally. When administered by the oral route, it shows excellent intestinal absorption. ALA is also efficiently reabsorbed in the renal proximal tubule after glomerular filtration. However, the pathways and mechanisms for its transmembrane transport into epithelial cells of intestine and kidney are unknown. Here we demonstrate that ALA uses the intestinal and renal apical peptide transporters for entering into epithelial cells. Kinetics and characteristics of ALA transport were determined in Xenopus laevis ooyctes and Pichia pastoris yeast cells expressing either the cloned intestinal peptide transporter PEPT1 or the renal form PEPT2. By using radiolabeled ALA and electrophysiological techniques in these heterologous expression systems, we established that: (a) PEPT1 and PEPT2 translocate 3H-ALA by saturable and pH-dependent transport mechanisms, (b) that ALA and di-/tripeptides, but not GABA or related amino acids, compete at the same substrate-binding site of the carriers, and (c) that ALA transport is electrogenic in nature as a consequence of H+/ALA cotransport. Reverse transcriptase-PCR analysis performed with specific primers for PEPT1 and PEPT2 in rabbit tissues demonstrates that, in particular, the PEPT2 mRNA is expressed in a variety of other tissues including lung, brain, and mammary gland, which have been shown to accumulate ALA. This suggests that these tissues could take up the porphyrin precusor via expressed peptide transporters, providing the endogenous photosensitizers for efficient photodynamic therapy.

Full Text

The Full Text of this article is available as a PDF (287.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amasheh S., Wenzel U., Boll M., Dorn D., Weber W., Clauss W., Daniel H. Transport of charged dipeptides by the intestinal H+/peptide symporter PepT1 expressed in Xenopus laevis oocytes. J Membr Biol. 1997 Feb 1;155(3):247–256. doi: 10.1007/s002329900177. [DOI] [PubMed] [Google Scholar]
  2. Amasheh S., Wenzel U., Weber W. M., Clauss W., Daniel H. Electrophysiological analysis of the function of the mammalian renal peptide transporter expressed in Xenopus laevis oocytes. J Physiol. 1997 Oct 1;504(Pt 1):169–174. doi: 10.1111/j.1469-7793.1997.169bf.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bermúdez Moretti M., Correa García S., Ramos E., Batlle A. delta-Aminolevulinic acid uptake is mediated by the gamma-aminobutyric acid-specific permease UGA4. Cell Mol Biol (Noisy-le-grand) 1996 Jun;42(4):519–523. [PubMed] [Google Scholar]
  4. Boll M., Herget M., Wagener M., Weber W. M., Markovich D., Biber J., Clauss W., Murer H., Daniel H. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):284–289. doi: 10.1073/pnas.93.1.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boll M., Markovich D., Weber W. M., Korte H., Daniel H., Murer H. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, beta-lactam antibiotics and ACE-inhibitors. Pflugers Arch. 1994 Nov;429(1):146–149. doi: 10.1007/BF02584043. [DOI] [PubMed] [Google Scholar]
  6. Cheeks C., Wedeen R. P. Renal tubular transport of delta-aminolevulinic acid in rat. Proc Soc Exp Biol Med. 1986 Apr;181(4):596–601. doi: 10.3181/00379727-181-42297. [DOI] [PubMed] [Google Scholar]
  7. Daniel H., Adibi S. A. Functional separation of dipeptide transport and hydrolysis in kidney brush border membrane vesicles. FASEB J. 1994 Jul;8(10):753–759. doi: 10.1096/fasebj.8.10.8050675. [DOI] [PubMed] [Google Scholar]
  8. Daniel H., Adibi S. A. Selective effect of zinc on uphill transport of oligopeptides into kidney brush border membrane vesicles. FASEB J. 1995 Aug;9(11):1112–1117. doi: 10.1096/fasebj.9.11.7649411. [DOI] [PubMed] [Google Scholar]
  9. Daniel H. Function and molecular structure of brush border membrane peptide/H+ symporters. J Membr Biol. 1996 Dec;154(3):197–203. doi: 10.1007/s002329900144. [DOI] [PubMed] [Google Scholar]
  10. Daniel H., Herget M. Cellular and molecular mechanisms of renal peptide transport. Am J Physiol. 1997 Jul;273(1 Pt 2):F1–F8. doi: 10.1152/ajprenal.1997.273.1.F1. [DOI] [PubMed] [Google Scholar]
  11. Durkó I., Juhász A. Porphyrin synthesis in primary nervous tissue cultures from 10(-3) M delta-aminolaevulinic acid in the presence of melatonin and neuropeptides. Neurochem Res. 1986 May;11(5):607–615. doi: 10.1007/BF00965330. [DOI] [PubMed] [Google Scholar]
  12. Döring F., Theis S., Daniel H. Expression and functional characterization of the mammalian intestinal peptide transporter PepT1 in the methylotropic yeast Pichia pastoris. Biochem Biophys Res Commun. 1997 Mar 27;232(3):656–662. doi: 10.1006/bbrc.1997.6351. [DOI] [PubMed] [Google Scholar]
  13. Elliott T. Transport of 5-aminolevulinic acid by the dipeptide permease in Salmonella typhimurium. J Bacteriol. 1993 Jan;175(2):325–331. doi: 10.1128/jb.175.2.325-331.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Enjoh M., Hashimoto K., Arai S., Shimizu M. Inhibitory effect of arphamenine A on intestinal dipeptide transport. Biosci Biotechnol Biochem. 1996 Nov;60(11):1893–1895. doi: 10.1271/bbb.60.1893. [DOI] [PubMed] [Google Scholar]
  15. Fei Y. J., Kanai Y., Nussberger S., Ganapathy V., Leibach F. H., Romero M. F., Singh S. K., Boron W. F., Hediger M. A. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994 Apr 7;368(6471):563–566. doi: 10.1038/368563a0. [DOI] [PubMed] [Google Scholar]
  16. Fromm D., Kessel D., Webber J. Feasibility of photodynamic therapy using endogenous photosensitization for colon cancer. Arch Surg. 1996 Jun;131(6):667–669. doi: 10.1001/archsurg.1996.01430180093020. [DOI] [PubMed] [Google Scholar]
  17. Gibson S. L., Havens J. J., Foster T. H., Hilf R. Time-dependent intracellular accumulation of delta-aminolevulinic acid, induction of porphyrin synthesis and subsequent phototoxicity. Photochem Photobiol. 1997 Mar;65(3):416–421. doi: 10.1111/j.1751-1097.1997.tb08580.x. [DOI] [PubMed] [Google Scholar]
  18. Liang R., Fei Y. J., Prasad P. D., Ramamoorthy S., Han H., Yang-Feng T. L., Hediger M. A., Ganapathy V., Leibach F. H. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem. 1995 Mar 24;270(12):6456–6463. doi: 10.1074/jbc.270.12.6456. [DOI] [PubMed] [Google Scholar]
  19. Liu W., Liang R., Ramamoorthy S., Fei Y. J., Ganapathy M. E., Hediger M. A., Ganapathy V., Leibach F. H. Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Biochim Biophys Acta. 1995 May 4;1235(2):461–466. doi: 10.1016/0005-2736(95)80036-f. [DOI] [PubMed] [Google Scholar]
  20. Loh C. S., MacRobert A. J., Bedwell J., Regula J., Krasner N., Bown S. G. Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy. Br J Cancer. 1993 Jul;68(1):41–51. doi: 10.1038/bjc.1993.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mackenzie B., Loo D. D., Fei Y., Liu W. J., Ganapathy V., Leibach F. H., Wright E. M. Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1. J Biol Chem. 1996 Mar 8;271(10):5430–5437. doi: 10.1074/jbc.271.10.5430. [DOI] [PubMed] [Google Scholar]
  22. Malandro M. S., Kilberg M. S. Molecular biology of mammalian amino acid transporters. Annu Rev Biochem. 1996;65:305–336. doi: 10.1146/annurev.bi.65.070196.001513. [DOI] [PubMed] [Google Scholar]
  23. Miyamoto K., Shiraga T., Morita K., Yamamoto H., Haga H., Taketani Y., Tamai I., Sai Y., Tsuji A., Takeda E. Sequence, tissue distribution and developmental changes in rat intestinal oligopeptide transporter. Biochim Biophys Acta. 1996 Feb 7;1305(1-2):34–38. doi: 10.1016/0167-4781(95)00208-1. [DOI] [PubMed] [Google Scholar]
  24. Nussberger S., Steel A., Trotti D., Romero M. F., Boron W. F., Hediger M. A. Symmetry of H+ binding to the intra- and extracellular side of the H+-coupled oligopeptide cotransporter PepT1. J Biol Chem. 1997 Mar 21;272(12):7777–7785. doi: 10.1074/jbc.272.12.7777. [DOI] [PubMed] [Google Scholar]
  25. O'Flaherty E. J., Hammond P. B., Taylor E. Renal reabsorption and secretion of delta-aminolevulinic acid in the rat. Fundam Appl Toxicol. 1981 May-Jun;1(3):278–281. doi: 10.1016/s0272-0590(81)80128-5. [DOI] [PubMed] [Google Scholar]
  26. Oishi H., Nomiyama H., Nomiyama K., Tomokuni K. Fluorometric HPLC determination of delta-aminolevulinic acid (ALA) in the plasma and urine of lead workers: biological indicators of lead exposure. J Anal Toxicol. 1996 Mar-Apr;20(2):106–110. doi: 10.1093/jat/20.2.106. [DOI] [PubMed] [Google Scholar]
  27. Palacín M. A new family of proteins (rBAT and 4F2hc) involved in cationic and zwitterionic amino acid transport: a tale of two proteins in search of a transport function. J Exp Biol. 1994 Nov;196:123–137. doi: 10.1242/jeb.196.1.123. [DOI] [PubMed] [Google Scholar]
  28. Peng Q., Warloe T., Berg K., Moan J., Kongshaug M., Giercksky K. E., Nesland J. M. 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer. 1997 Jun 15;79(12):2282–2308. doi: 10.1002/(sici)1097-0142(19970615)79:12<2282::aid-cncr2>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  29. Saito H., Motohashi H., Mukai M., Inui K. Cloning and characterization of a pH-sensing regulatory factor that modulates transport activity of the human H+/peptide cotransporter, PEPT1. Biochem Biophys Res Commun. 1997 Aug 28;237(3):577–582. doi: 10.1006/bbrc.1997.7129. [DOI] [PubMed] [Google Scholar]
  30. Saito H., Okuda M., Terada T., Sasaki S., Inui K. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney. J Pharmacol Exp Ther. 1995 Dec;275(3):1631–1637. [PubMed] [Google Scholar]
  31. Steinbach P., Weingandt H., Baumgartner R., Kriegmair M., Hofstädter F., Knüchel R. Cellular fluorescence of the endogenous photosensitizer protoporphyrin IX following exposure to 5-aminolevulinic acid. Photochem Photobiol. 1995 Nov;62(5):887–895. doi: 10.1111/j.1751-1097.1995.tb09152.x. [DOI] [PubMed] [Google Scholar]
  32. Steiner H. Y., Naider F., Becker J. M. The PTR family: a new group of peptide transporters. Mol Microbiol. 1995 Jun;16(5):825–834. doi: 10.1111/j.1365-2958.1995.tb02310.x. [DOI] [PubMed] [Google Scholar]
  33. Terr L., Weiner L. P. An autoradiographic study of delta-aminolevulinic acid uptake by mouse brain. Exp Neurol. 1983 Feb;79(2):564–568. doi: 10.1016/0014-4886(83)90234-0. [DOI] [PubMed] [Google Scholar]
  34. Tomokuni K., Ichiba M., Hirai Y. Elevated urinary excretion of beta-aminoisobutyric acid and delta-aminolevulinic acid (ALA) and the inhibition of ALA-synthase and ALA-dehydratase activities in both liver and kidney in mice exposed to lead. Toxicol Lett. 1991 Dec;59(1-3):169–173. doi: 10.1016/0378-4274(91)90069-i. [DOI] [PubMed] [Google Scholar]
  35. Verkamp E., Backman V. M., Björnsson J. M., Söll D., Eggertsson G. The periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli. J Bacteriol. 1993 Mar;175(5):1452–1456. doi: 10.1128/jb.175.5.1452-1456.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Webber J., Kessel D., Fromm D. Plasma levels of protoporphyrin IX in humans after oral administration of 5-aminolevulinic acid. J Photochem Photobiol B. 1997 Jan;37(1-2):151–153. doi: 10.1016/s1011-1344(96)07348-4. [DOI] [PubMed] [Google Scholar]
  37. Wyss-Desserich M. T., Sun C. H., Wyss P., Kurlawalla C. S., Haller U., Berns M. W., Tadir Y. Accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in normal and neoplastic human endometrial epithelial cells. Biochem Biophys Res Commun. 1996 Jul 25;224(3):819–824. doi: 10.1006/bbrc.1996.1106. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES