Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 15;102(2):402–411. doi: 10.1172/JCI2849

Obesity and diabetes in TNF-alpha receptor- deficient mice.

S A Schreyer 1, S C Chua Jr 1, R C LeBoeuf 1
PMCID: PMC508899  PMID: 9664082

Abstract

TNF-alpha may play a role in mediating insulin resistance associated with obesity. This concept is based on studies of obese rodents and humans, and cell culture models. TNF elicits cellular responses via two receptors called p55 and p75. Our purpose was to test the involvement of TNF in glucose homeostasis using mice lacking one or both TNF receptors. C57BL/6 mice lacking p55 (p55(-)/-), p75, (p75(-)/-), or both receptors (p55(-)/-p75(-)/-) were fed a high-fat diet to induce obesity. Marked fasting hyperinsulinemia was seen for p55(-)/-p75(-)/- males between 12 and 16 wk of feeding the high-fat diet. Insulin levels were four times greater than wild-type mice. In contrast, p55(-)/- and p75(-)/- mice exhibited insulin levels that were similar or reduced, respectively, as compared with wild-type mice. In addition, high-fat diet-fed p75(-)/- mice had the lowest body weights and leptin levels, and improved insulin sensitivity. Obese (db/db) mice, which are not responsive to leptin, were used to study the role of p55 in severe obesity. Male p55(-)/-db/db mice exhibited threefold higher insulin levels and twofold lower glucose levels at 20 wk of age than control db/db expressing p55. All db/db mice remained severely insulin resistant based on fasting plasma glucose and insulin levels, and glucose and insulin tolerance tests. Our data do not support the concept that TNF, acting via its receptors, is a major contributor to obesity-associated insulin resistance. In fact, data suggest that the two TNF receptors work in concert to protect against diabetes.

Full Text

The Full Text of this article is available as a PDF (232.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Begum N., Ragolia L. Effect of tumor necrosis factor-alpha on insulin action in cultured rat skeletal muscle cells. Endocrinology. 1996 Jun;137(6):2441–2446. doi: 10.1210/endo.137.6.8641197. [DOI] [PubMed] [Google Scholar]
  2. Campbell I. L., Iscaro A., Harrison L. C. IFN-gamma and tumor necrosis factor-alpha. Cytotoxicity to murine islets of Langerhans. J Immunol. 1988 Oct 1;141(7):2325–2329. [PubMed] [Google Scholar]
  3. Chen H., Charlat O., Tartaglia L. A., Woolf E. A., Weng X., Ellis S. J., Lakey N. D., Culpepper J., Moore K. J., Breitbart R. E. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996 Feb 9;84(3):491–495. doi: 10.1016/s0092-8674(00)81294-5. [DOI] [PubMed] [Google Scholar]
  4. Chen N. G., Swick A. G., Romsos D. R. Leptin constrains acetylcholine-induced insulin secretion from pancreatic islets of ob/ob mice. J Clin Invest. 1997 Sep 1;100(5):1174–1179. doi: 10.1172/JCI119629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen B., Novick D., Rubinstein M. Modulation of insulin activities by leptin. Science. 1996 Nov 15;274(5290):1185–1188. doi: 10.1126/science.274.5290.1185. [DOI] [PubMed] [Google Scholar]
  6. Comuzzie A. G., Hixson J. E., Almasy L., Mitchell B. D., Mahaney M. C., Dyer T. D., Stern M. P., MacCluer J. W., Blangero J. A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nat Genet. 1997 Mar;15(3):273–276. doi: 10.1038/ng0397-273. [DOI] [PubMed] [Google Scholar]
  7. Dahn M. S., Hsu C. J., Lange M. P., Jefferson L. S. Effects of tumor necrosis factor-alpha on glucose and albumin production in primary cultures of rat hepatocytes. Metabolism. 1994 Apr;43(4):476–480. doi: 10.1016/0026-0495(94)90080-9. [DOI] [PubMed] [Google Scholar]
  8. Elbein S. C., Hoffman M. D., Bragg K. L., Mayorga R. A. The genetics of NIDDM. An update. Diabetes Care. 1994 Dec;17(12):1523–1533. doi: 10.2337/diacare.17.12.1523. [DOI] [PubMed] [Google Scholar]
  9. Emilsson V., Liu Y. L., Cawthorne M. A., Morton N. M., Davenport M. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes. 1997 Feb;46(2):313–316. doi: 10.2337/diab.46.2.313. [DOI] [PubMed] [Google Scholar]
  10. Erickson J. C., Hollopeter G., Palmiter R. D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science. 1996 Dec 6;274(5293):1704–1707. doi: 10.1126/science.274.5293.1704. [DOI] [PubMed] [Google Scholar]
  11. Erickson S. L., de Sauvage F. J., Kikly K., Carver-Moore K., Pitts-Meek S., Gillett N., Sheehan K. C., Schreiber R. D., Goeddel D. V., Moore M. W. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature. 1994 Dec 8;372(6506):560–563. doi: 10.1038/372560a0. [DOI] [PubMed] [Google Scholar]
  12. Frederich R. C., Hamann A., Anderson S., Löllmann B., Lowell B. B., Flier J. S. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med. 1995 Dec;1(12):1311–1314. doi: 10.1038/nm1295-1311. [DOI] [PubMed] [Google Scholar]
  13. Granner D. K., O'Brien R. M. Molecular physiology and genetics of NIDDM. Importance of metabolic staging. Diabetes Care. 1992 Mar;15(3):369–395. doi: 10.2337/diacare.15.3.369. [DOI] [PubMed] [Google Scholar]
  14. Hamann A., Flier J. S., Lowell B. B. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology. 1996 Jan;137(1):21–29. doi: 10.1210/endo.137.1.8536614. [DOI] [PubMed] [Google Scholar]
  15. Hanis C. L., Boerwinkle E., Chakraborty R., Ellsworth D. L., Concannon P., Stirling B., Morrison V. A., Wapelhorst B., Spielman R. S., Gogolin-Ewens K. J. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet. 1996 Jun;13(2):161–166. doi: 10.1038/ng0696-161. [DOI] [PubMed] [Google Scholar]
  16. Hanson R. L., Elston R. C., Pettitt D. J., Bennett P. H., Knowler W. C. Segregation analysis of non-insulin-dependent diabetes mellitus in Pima Indians: evidence for a major-gene effect. Am J Hum Genet. 1995 Jul;57(1):160–170. [PMC free article] [PubMed] [Google Scholar]
  17. Havel P. J., Kasim-Karakas S., Mueller W., Johnson P. R., Gingerich R. L., Stern J. S. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: effects of dietary fat content and sustained weight loss. J Clin Endocrinol Metab. 1996 Dec;81(12):4406–4413. doi: 10.1210/jcem.81.12.8954050. [DOI] [PubMed] [Google Scholar]
  18. Hofmann C., Lorenz K., Braithwaite S. S., Colca J. R., Palazuk B. J., Hotamisligil G. S., Spiegelman B. M. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology. 1994 Jan;134(1):264–270. doi: 10.1210/endo.134.1.8275942. [DOI] [PubMed] [Google Scholar]
  19. Horton E. S. NIDDM--the devastating disease. Diabetes Res Clin Pract. 1995 Aug;28 (Suppl):S3–11. doi: 10.1016/0168-8227(95)01087-t. [DOI] [PubMed] [Google Scholar]
  20. Hotamisligil G. S., Arner P., Atkinson R. L., Spiegelman B. M. Differential regulation of the p80 tumor necrosis factor receptor in human obesity and insulin resistance. Diabetes. 1997 Mar;46(3):451–455. doi: 10.2337/diab.46.3.451. [DOI] [PubMed] [Google Scholar]
  21. Hotamisligil G. S., Arner P., Caro J. F., Atkinson R. L., Spiegelman B. M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995 May;95(5):2409–2415. doi: 10.1172/JCI117936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hotamisligil G. S., Budavari A., Murray D., Spiegelman B. M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest. 1994 Oct;94(4):1543–1549. doi: 10.1172/JCI117495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hotamisligil G. S., Murray D. L., Choy L. N., Spiegelman B. M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4854–4858. doi: 10.1073/pnas.91.11.4854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hotamisligil G. S., Shargill N. S., Spiegelman B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993 Jan 1;259(5091):87–91. doi: 10.1126/science.7678183. [DOI] [PubMed] [Google Scholar]
  25. Hotamisligil G. S., Spiegelman B. M. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes. 1994 Nov;43(11):1271–1278. doi: 10.2337/diab.43.11.1271. [DOI] [PubMed] [Google Scholar]
  26. Jensen D. R., Schlaepfer I. R., Morin C. L., Pennington D. S., Marcell T., Ammon S. M., Gutierrez-Hartmann A., Eckel R. H. Prevention of diet-induced obesity in transgenic mice overexpressing skeletal muscle lipoprotein lipase. Am J Physiol. 1997 Aug;273(2 Pt 2):R683–R689. doi: 10.1152/ajpregu.1997.273.2.R683. [DOI] [PubMed] [Google Scholar]
  27. Kern P. A. Potential role of TNFalpha and lipoprotein lipase as candidate genes for obesity. J Nutr. 1997 Sep;127(9):1917S–1922S. doi: 10.1093/jn/127.9.1917S. [DOI] [PubMed] [Google Scholar]
  28. Kern P. A., Saghizadeh M., Ong J. M., Bosch R. J., Deem R., Simsolo R. B. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest. 1995 May;95(5):2111–2119. doi: 10.1172/JCI117899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kirchgessner T. G., Uysal K. T., Wiesbrock S. M., Marino M. W., Hotamisligil G. S. Tumor necrosis factor-alpha contributes to obesity-related hyperleptinemia by regulating leptin release from adipocytes. J Clin Invest. 1997 Dec 1;100(11):2777–2782. doi: 10.1172/JCI119824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lang C. H., Dobrescu C., Bagby G. J. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology. 1992 Jan;130(1):43–52. doi: 10.1210/endo.130.1.1727716. [DOI] [PubMed] [Google Scholar]
  31. LeBoeuf R. C., Caldwell M., Kirk E. Regulation by nutritional status of lipids and apolipoproteins A-I, A-II, and A-IV in inbred mice. J Lipid Res. 1994 Jan;35(1):121–133. [PubMed] [Google Scholar]
  32. Lee G. H., Proenca R., Montez J. M., Carroll K. M., Darvishzadeh J. G., Lee J. I., Friedman J. M. Abnormal splicing of the leptin receptor in diabetic mice. Nature. 1996 Feb 15;379(6566):632–635. doi: 10.1038/379632a0. [DOI] [PubMed] [Google Scholar]
  33. Lönnqvist F., Wennlund A., Arner P. Relationship between circulating leptin and peripheral fat distribution in obese subjects. Int J Obes Relat Metab Disord. 1997 Apr;21(4):255–260. doi: 10.1038/sj.ijo.0800394. [DOI] [PubMed] [Google Scholar]
  34. Mackay F., Rothe J., Bluethmann H., Loetscher H., Lesslauer W. Differential responses of fibroblasts from wild-type and TNF-R55-deficient mice to mouse and human TNF-alpha activation. J Immunol. 1994 Dec 1;153(11):5274–5284. [PubMed] [Google Scholar]
  35. Morin C. L., Schlaepfer I. R., Eckel R. H. Tumor necrosis factor-alpha eliminates binding of NF-Y and an octamer-binding protein to the lipoprotein lipase promoter in 3T3-L1 adipocytes. J Clin Invest. 1995 Apr;95(4):1684–1689. doi: 10.1172/JCI117844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Müller G., Ertl J., Gerl M., Preibisch G. Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J Biol Chem. 1997 Apr 18;272(16):10585–10593. doi: 10.1074/jbc.272.16.10585. [DOI] [PubMed] [Google Scholar]
  37. Ofei F., Hurel S., Newkirk J., Sopwith M., Taylor R. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes. 1996 Jul;45(7):881–885. doi: 10.2337/diab.45.7.881. [DOI] [PubMed] [Google Scholar]
  38. Peraldi P., Hotamisligil G. S., Buurman W. A., White M. F., Spiegelman B. M. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J Biol Chem. 1996 May 31;271(22):13018–13022. doi: 10.1074/jbc.271.22.13018. [DOI] [PubMed] [Google Scholar]
  39. Peschon J. J., Torrance D. S., Stocking K. L., Glaccum M. B., Otten C., Willis C. R., Charrier K., Morrissey P. J., Ware C. B., Mohler K. M. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J Immunol. 1998 Jan 15;160(2):943–952. [PubMed] [Google Scholar]
  40. Pfeffer K., Matsuyama T., Kündig T. M., Wakeham A., Kishihara K., Shahinian A., Wiegmann K., Ohashi P. S., Krönke M., Mak T. W. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell. 1993 May 7;73(3):457–467. doi: 10.1016/0092-8674(93)90134-c. [DOI] [PubMed] [Google Scholar]
  41. Rothe J., Lesslauer W., Lötscher H., Lang Y., Koebel P., Köntgen F., Althage A., Zinkernagel R., Steinmetz M., Bluethmann H. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature. 1993 Aug 26;364(6440):798–802. doi: 10.1038/364798a0. [DOI] [PubMed] [Google Scholar]
  42. Saad M. F., Khan A., Sharma A., Michael R., Riad-Gabriel M. G., Boyadjian R., Jinagouda S. D., Steil G. M., Kamdar V. Physiological insulinemia acutely modulates plasma leptin. Diabetes. 1998 Apr;47(4):544–549. doi: 10.2337/diabetes.47.4.544. [DOI] [PubMed] [Google Scholar]
  43. Saghizadeh M., Ong J. M., Garvey W. T., Henry R. R., Kern P. A. The expression of TNF alpha by human muscle. Relationship to insulin resistance. J Clin Invest. 1996 Feb 15;97(4):1111–1116. doi: 10.1172/JCI118504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schwartz M. W., Baskin D. G., Bukowski T. R., Kuijper J. L., Foster D., Lasser G., Prunkard D. E., Porte D., Jr, Woods S. C., Seeley R. J. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes. 1996 Apr;45(4):531–535. doi: 10.2337/diab.45.4.531. [DOI] [PubMed] [Google Scholar]
  45. Searle T. W., Murray J. D., Baker P. J. Effect of increased production of growth hormone on body composition in mice: transgenic versus control. J Endocrinol. 1992 Feb;132(2):285–291. doi: 10.1677/joe.0.1320285. [DOI] [PubMed] [Google Scholar]
  46. Stern M. P., Mitchell B. D., Blangero J., Reinhart L., Krammerer C. M., Harrison C. R., Shipman P. A., O'Connell P., Frazier M. L., MacCluer J. W. Evidence for a major gene for type II diabetes and linkage analyses with selected candidate genes in Mexican-Americans. Diabetes. 1996 May;45(5):563–568. doi: 10.2337/diab.45.5.563. [DOI] [PubMed] [Google Scholar]
  47. Surwit R. S., Kuhn C. M., Cochrane C., McCubbin J. A., Feinglos M. N. Diet-induced type II diabetes in C57BL/6J mice. Diabetes. 1988 Sep;37(9):1163–1167. doi: 10.2337/diab.37.9.1163. [DOI] [PubMed] [Google Scholar]
  48. Surwit R. S., Seldin M. F., Kuhn C. M., Cochrane C., Feinglos M. N. Control of expression of insulin resistance and hyperglycemia by different genetic factors in diabetic C57BL/6J mice. Diabetes. 1991 Jan;40(1):82–87. doi: 10.2337/diab.40.1.82. [DOI] [PubMed] [Google Scholar]
  49. Susulic V. S., Frederich R. C., Lawitts J., Tozzo E., Kahn B. B., Harper M. E., Himms-Hagen J., Flier J. S., Lowell B. B. Targeted disruption of the beta 3-adrenergic receptor gene. J Biol Chem. 1995 Dec 8;270(49):29483–29492. doi: 10.1074/jbc.270.49.29483. [DOI] [PubMed] [Google Scholar]
  50. Tartaglia L. A., Weber R. F., Figari I. S., Reynolds C., Palladino M. A., Jr, Goeddel D. V. The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9292–9296. doi: 10.1073/pnas.88.20.9292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Uysal K. T., Wiesbrock S. M., Marino M. W., Hotamisligil G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997 Oct 9;389(6651):610–614. doi: 10.1038/39335. [DOI] [PubMed] [Google Scholar]
  52. Vaisse C., Halaas J. L., Horvath C. M., Darnell J. E., Jr, Stoffel M., Friedman J. M. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet. 1996 Sep;14(1):95–97. doi: 10.1038/ng0996-95. [DOI] [PubMed] [Google Scholar]
  53. Vara E., Arias-Díaz J., García C., Balibrea J. L. Effect of cytokines on insulin release and glucose oxidation by cultured human islets of ventral and dorsal origin. Transplant Proc. 1994 Apr;26(2):695–697. [PubMed] [Google Scholar]
  54. Ventre J., Doebber T., Wu M., MacNaul K., Stevens K., Pasparakis M., Kollias G., Moller D. E. Targeted disruption of the tumor necrosis factor-alpha gene: metabolic consequences in obese and nonobese mice. Diabetes. 1997 Sep;46(9):1526–1531. doi: 10.2337/diab.46.9.1526. [DOI] [PubMed] [Google Scholar]
  55. Zhang S., Kim K. H. TNF-alpha inhibits glucose-induced insulin secretion in a pancreatic beta-cell line (INS-1). FEBS Lett. 1995 Dec 18;377(2):237–239. doi: 10.1016/0014-5793(95)01272-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES