Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 15;102(2):445–454. doi: 10.1172/JCI3169

Asbestos inhalation induces reactive nitrogen species and nitrotyrosine formation in the lungs and pleura of the rat.

S Tanaka 1, N Choe 1, D R Hemenway 1, S Zhu 1, S Matalon 1, E Kagan 1
PMCID: PMC508904  PMID: 9664087

Abstract

To determine whether asbestos inhalation induces the formation of reactive nitrogen species, three groups of rats were exposed intermittently over 2 wk to either filtered room air (sham-exposed) or to chrysotile or crocidolite asbestos fibers. The rats were killed at 1 or 6 wk after exposure. At 1 wk, significantly greater numbers of alveolar and pleural macrophages from asbestos-exposed rats than from sham-exposed rats demonstrated inducible nitric oxide synthase protein immunoreactivity. Alveolar macrophages from asbestos-exposed rats also generated significantly greater nitrite formation than did macrophages from sham-exposed rats. Strong immunoreactivity for nitrotyrosine, a marker of peroxynitrite formation, was evident in lungs from chrysotile- and crocidolite-exposed rats at 1 and 6 wk. Staining was most evident at alveolar duct bifurcations and within bronchiolar epithelium, alveolar macrophages, and the visceral and parietal pleural mesothelium. Lungs from sham-exposed rats demonstrated minimal immunoreactivity for nitrotyrosine. Significantly greater quantities of nitrotyrosine were detected by ELISA in lung extracts from asbestos-exposed rats than from sham-exposed rats. These findings suggest that asbestos inhalation can induce inducible nitric oxide synthase activation and peroxynitrite formation in vivo, and provide evidence of a possible alternative mechanism of asbestos-induced injury to that thought to be induced by Fenton reactions.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer M. L., Beckman J. S., Bridges R. J., Fuller C. M., Matalon S. Peroxynitrite inhibits sodium uptake in rat colonic membrane vesicles. Biochim Biophys Acta. 1992 Feb 17;1104(1):87–94. doi: 10.1016/0005-2736(92)90135-9. [DOI] [PubMed] [Google Scholar]
  2. Beckmann J. S., Ye Y. Z., Anderson P. G., Chen J., Accavitti M. A., Tarpey M. M., White C. R. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler. 1994 Feb;375(2):81–88. doi: 10.1515/bchm3.1994.375.2.81. [DOI] [PubMed] [Google Scholar]
  3. Broaddus V. C., Yang L., Scavo L. M., Ernst J. D., Boylan A. M. Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J Clin Invest. 1996 Nov 1;98(9):2050–2059. doi: 10.1172/JCI119010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brody A. R., Hill L. H., Adkins B., Jr, O'Connor R. W. Chrysotile asbestos inhalation in rats: deposition pattern and reaction of alveolar epithelium and pulmonary macrophages. Am Rev Respir Dis. 1981 Jun;123(6):670–679. doi: 10.1164/arrd.1981.123.6.670. [DOI] [PubMed] [Google Scholar]
  5. BéruBé K. A., Quinlan T. R., Fung H., Magae J., Vacek P., Taatjes D. J., Mossman B. T. Apoptosis is observed in mesothelial cells after exposure to crocidolite asbestos. Am J Respir Cell Mol Biol. 1996 Jul;15(1):141–147. doi: 10.1165/ajrcmb.15.1.8679218. [DOI] [PubMed] [Google Scholar]
  6. Carreras M. C., Pargament G. A., Catz S. D., Poderoso J. J., Boveris A. Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett. 1994 Mar 14;341(1):65–68. doi: 10.1016/0014-5793(94)80241-6. [DOI] [PubMed] [Google Scholar]
  7. Chao C. C., Park S. H., Aust A. E. Participation of nitric oxide and iron in the oxidation of DNA in asbestos-treated human lung epithelial cells. Arch Biochem Biophys. 1996 Feb 1;326(1):152–157. doi: 10.1006/abbi.1996.0059. [DOI] [PubMed] [Google Scholar]
  8. Choe N., Tanaka S., Xia W., Hemenway D. R., Roggli V. L., Kagan E. Pleural macrophage recruitment and activation in asbestos-induced pleural injury. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1257–1260. doi: 10.1289/ehp.97105s51257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coin P. G., Osornio-Vargas A. R., Roggli V. L., Brody A. R. Pulmonary fibrogenesis after three consecutive inhalation exposures to chrysotile asbestos. Am J Respir Crit Care Med. 1996 Nov;154(5):1511–1519. doi: 10.1164/ajrccm.154.5.8912773. [DOI] [PubMed] [Google Scholar]
  10. Craighead J. E., Abraham J. L., Churg A., Green F. H., Kleinerman J., Pratt P. C., Seemayer T. A., Vallyathan V., Weill H. The pathology of asbestos-associated diseases of the lungs and pleural cavities: diagnostic criteria and proposed grading schema. Report of the Pneumoconiosis Committee of the College of American Pathologists and the National Institute for Occupational Safety and Health. Arch Pathol Lab Med. 1982 Oct 8;106(11):544–596. [PubMed] [Google Scholar]
  11. Crow J. P., Ye Y. Z., Strong M., Kirk M., Barnes S., Beckman J. S. Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J Neurochem. 1997 Nov;69(5):1945–1953. doi: 10.1046/j.1471-4159.1997.69051945.x. [DOI] [PubMed] [Google Scholar]
  12. Donaldson K., Brown D. M., Miller B. G., Brody A. R. Bromo-deoxyuridine (BRDU) uptake in the lungs of rats inhaling amosite asbestos or vitreous fibres at equal airborne fibre concentrations. Exp Toxicol Pathol. 1995 May;47(2-3):207–211. doi: 10.1016/S0940-2993(11)80316-7. [DOI] [PubMed] [Google Scholar]
  13. Dong H. Y., Buard A., Lévy F., Renier A., Laval F., Jaurand M. C. Synthesis of poly(ADP-ribose) in asbestos treated rat pleural mesothelial cells in culture. Mutat Res. 1995 Oct;331(2):197–204. doi: 10.1016/0027-5107(95)00069-u. [DOI] [PubMed] [Google Scholar]
  14. Ford H., Watkins S., Reblock K., Rowe M. The role of inflammatory cytokines and nitric oxide in the pathogenesis of necrotizing enterocolitis. J Pediatr Surg. 1997 Feb;32(2):275–282. doi: 10.1016/s0022-3468(97)90194-9. [DOI] [PubMed] [Google Scholar]
  15. Gibbs A. R. Role of asbestos and other fibres in the development of diffuse malignant mesothelioma. Thorax. 1990 Sep;45(9):649–654. doi: 10.1136/thx.45.9.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goodglick L. A., Kane A. B. Cytotoxicity of long and short crocidolite asbestos fibers in vitro and in vivo. Cancer Res. 1990 Aug 15;50(16):5153–5163. [PubMed] [Google Scholar]
  17. Gow A. J., Duran D., Malcolm S., Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett. 1996 Apr 29;385(1-2):63–66. doi: 10.1016/0014-5793(96)00347-x. [DOI] [PubMed] [Google Scholar]
  18. Gow A., Duran D., Thom S. R., Ischiropoulos H. Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch Biochem Biophys. 1996 Sep 1;333(1):42–48. doi: 10.1006/abbi.1996.0362. [DOI] [PubMed] [Google Scholar]
  19. Haddad I. Y., Crow J. P., Hu P., Ye Y., Beckman J., Matalon S. Concurrent generation of nitric oxide and superoxide damages surfactant protein A. Am J Physiol. 1994 Sep;267(3 Pt 1):L242–L249. doi: 10.1152/ajplung.1994.267.3.L242. [DOI] [PubMed] [Google Scholar]
  20. Haddad I. Y., Pataki G., Hu P., Galliani C., Beckman J. S., Matalon S. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J Clin Invest. 1994 Dec;94(6):2407–2413. doi: 10.1172/JCI117607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hartmann D. P., Georgian M. M., Oghiso Y., Kagan E. Enhanced interleukin activity following asbestos inhalation. Clin Exp Immunol. 1984 Mar;55(3):643–650. [PMC free article] [PubMed] [Google Scholar]
  22. Hu P., Ischiropoulos H., Beckman J. S., Matalon S. Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells. Am J Physiol. 1994 Jun;266(6 Pt 1):L628–L634. doi: 10.1152/ajplung.1994.266.6.L628. [DOI] [PubMed] [Google Scholar]
  23. Ischiropoulos H., Zhu L., Beckman J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992 Nov 1;298(2):446–451. doi: 10.1016/0003-9861(92)90433-w. [DOI] [PubMed] [Google Scholar]
  24. Kagan E. Current perspectives in asbestosis. Ann Allergy. 1985 Jun;54(6):464–473. [PubMed] [Google Scholar]
  25. Kagan E., Oghiso Y., Hartmann D. P. The effects of chrysotile and crocidolite asbestos on the lower respiratory tract: analysis of bronchoalveolar lavage constituents. Environ Res. 1983 Dec;32(2):382–397. doi: 10.1016/0013-9351(83)90120-2. [DOI] [PubMed] [Google Scholar]
  26. Khan J., Brennand D. M., Bradley N., Gao B., Bruckdorfer R., Jacobs M., Brennan D. M. 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J. 1998 Mar 1;330(Pt 2):795–801. doi: 10.1042/bj3300795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kobzik L., Bredt D. S., Lowenstein C. J., Drazen J., Gaston B., Sugarbaker D., Stamler J. S. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol. 1993 Oct;9(4):371–377. doi: 10.1165/ajrcmb/9.4.371. [DOI] [PubMed] [Google Scholar]
  28. Leeuwenburgh C., Hardy M. M., Hazen S. L., Wagner P., Oh-ishi S., Steinbrecher U. P., Heinecke J. W. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem. 1997 Jan 17;272(3):1433–1436. doi: 10.1074/jbc.272.3.1433. [DOI] [PubMed] [Google Scholar]
  29. Lund L. G., Aust A. E. Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in phi X174 RFI DNA. Carcinogenesis. 1992 Apr;13(4):637–642. doi: 10.1093/carcin/13.4.637. [DOI] [PubMed] [Google Scholar]
  30. Marcinkiewicz J., Grabowska A., Chain B. Nitric oxide up-regulates the release of inflammatory mediators by mouse macrophages. Eur J Immunol. 1995 Apr;25(4):947–951. doi: 10.1002/eji.1830250414. [DOI] [PubMed] [Google Scholar]
  31. McCall M. N., Easterbrook-Smith S. B. Comparison of the role of tyrosine residues in human IgG and rabbit IgG in binding of complement subcomponent C1q. Biochem J. 1989 Feb 1;257(3):845–851. doi: 10.1042/bj2570845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mossman B. T., Janssen Y. M., Marsh J. P., Sesko A., Shatos M. A., Doherty J., Adler K. B., Hemenway D., Mickey R., Vacek Development and characterization of a rapid-onset rodent inhalation model of asbestosis for disease prevention. Toxicol Pathol. 1991;19(4 Pt 1):412–418. doi: 10.1177/0192623391019004-110. [DOI] [PubMed] [Google Scholar]
  33. Mossman B. T., Kamp D. W., Weitzman S. A. Mechanisms of carcinogenesis and clinical features of asbestos-associated cancers. Cancer Invest. 1996;14(5):466–480. doi: 10.3109/07357909609018904. [DOI] [PubMed] [Google Scholar]
  34. Mossman B. T., Marsh J. P., Sesko A., Hill S., Shatos M. A., Doherty J., Petruska J., Adler K. B., Hemenway D., Mickey R. Inhibition of lung injury, inflammation, and interstitial pulmonary fibrosis by polyethylene glycol-conjugated catalase in a rapid inhalation model of asbestosis. Am Rev Respir Dis. 1990 May;141(5 Pt 1):1266–1271. doi: 10.1164/ajrccm/141.5_Pt_1.1266. [DOI] [PubMed] [Google Scholar]
  35. Mossman B. T., Surinrut P., Brinton B. T., Marsh J. P., Heintz N. H., Lindau-Shepard B., Shaffer J. B. Transfection of a manganese-containing superoxide dismutase gene into hamster tracheal epithelial cells ameliorates asbestos-mediated cytotoxicity. Free Radic Biol Med. 1996;21(2):125–131. doi: 10.1016/0891-5849(96)00014-7. [DOI] [PubMed] [Google Scholar]
  36. Oghiso Y., Kagan E., Brody A. R. Intrapulmonary distribution of inhaled chrysotile and crocidolite asbestos: ultrastructural features. Br J Exp Pathol. 1984 Aug;65(4):467–484. [PMC free article] [PubMed] [Google Scholar]
  37. Owens M. W., Milligan S. A., Grisham M. B. Nitric oxide-dependent N-nitrosating activity of rat pleural mesothelial cells. Free Radic Res. 1995 Oct;23(4):371–378. doi: 10.3109/10715769509065258. [DOI] [PubMed] [Google Scholar]
  38. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
  39. Robinson B. W., Rose A. H., Hayes A., Musk A. W. Increased pulmonary gamma interferon production in asbestosis. Am Rev Respir Dis. 1988 Aug;138(2):278–283. doi: 10.1164/ajrccm/138.2.278. [DOI] [PubMed] [Google Scholar]
  40. Saleh D., Barnes P. J., Giaid A. Increased production of the potent oxidant peroxynitrite in the lungs of patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997 May;155(5):1763–1769. doi: 10.1164/ajrccm.155.5.9154889. [DOI] [PubMed] [Google Scholar]
  41. Setoguchi K., Takeya M., Akaike T., Suga M., Hattori R., Maeda H., Ando M., Takahashi K. Expression of inducible nitric oxide synthase and its involvement in pulmonary granulomatous inflammation in rats. Am J Pathol. 1996 Dec;149(6):2005–2022. [PMC free article] [PubMed] [Google Scholar]
  42. Shigenaga M. K., Lee H. H., Blount B. C., Christen S., Shigeno E. T., Yip H., Ames B. N. Inflammation and NO(X)-induced nitration: assay for 3-nitrotyrosine by HPLC with electrochemical detection. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3211–3216. doi: 10.1073/pnas.94.7.3211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Smith A. H., Wright C. C. Chrysotile asbestos is the main cause of pleural mesothelioma. Am J Ind Med. 1996 Sep;30(3):252–266. doi: 10.1002/(SICI)1097-0274(199609)30:3<252::AID-AJIM2>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  44. Sokolovsky M., Riordan J. F., Vallee B. L. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry. 1966 Nov;5(11):3582–3589. doi: 10.1021/bi00875a029. [DOI] [PubMed] [Google Scholar]
  45. Stayner L. T., Dankovic D. A., Lemen R. A. Occupational exposure to chrysotile asbestos and cancer risk: a review of the amphibole hypothesis. Am J Public Health. 1996 Feb;86(2):179–186. doi: 10.2105/ajph.86.2.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Szabolcs M., Michler R. E., Yang X., Aji W., Roy D., Athan E., Sciacca R. R., Minanov O. P., Cannon P. J. Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to induction of nitric oxide synthase. Circulation. 1996 Oct 1;94(7):1665–1673. doi: 10.1161/01.cir.94.7.1665. [DOI] [PubMed] [Google Scholar]
  47. Szabó C., Saunders C., O'Connor M., Salzman A. L. Peroxynitrite causes energy depletion and increases permeability via activation of poly (ADP-ribose) synthetase in pulmonary epithelial cells. Am J Respir Cell Mol Biol. 1997 Feb;16(2):105–109. doi: 10.1165/ajrcmb.16.2.9032115. [DOI] [PubMed] [Google Scholar]
  48. Thomas G., Ando T., Verma K., Kagan E. Asbestos fibers and interferon-gamma up-regulate nitric oxide production in rat alveolar macrophages. Am J Respir Cell Mol Biol. 1994 Dec;11(6):707–715. doi: 10.1165/ajrcmb.11.6.7524571. [DOI] [PubMed] [Google Scholar]
  49. Thomas G., Ramwell P. W. Vasodilatory properties of mono-L-arginine-containing compounds. Biochem Biophys Res Commun. 1988 Jul 15;154(1):332–338. doi: 10.1016/0006-291x(88)90689-4. [DOI] [PubMed] [Google Scholar]
  50. Wizemann T. M., Gardner C. R., Laskin J. D., Quinones S., Durham S. K., Goller N. L., Ohnishi S. T., Laskin D. L. Production of nitric oxide and peroxynitrite in the lung during acute endotoxemia. J Leukoc Biol. 1994 Dec;56(6):759–768. doi: 10.1002/jlb.56.6.759. [DOI] [PubMed] [Google Scholar]
  51. Zhang Y., Lee T. C., Guillemin B., Yu M. C., Rom W. N. Enhanced IL-1 beta and tumor necrosis factor-alpha release and messenger RNA expression in macrophages from idiopathic pulmonary fibrosis or after asbestos exposure. J Immunol. 1993 May 1;150(9):4188–4196. [PubMed] [Google Scholar]
  52. Zhu S., Haddad I. Y., Matalon S. Nitration of surfactant protein A (SP-A) tyrosine residues results in decreased mannose binding ability. Arch Biochem Biophys. 1996 Sep 1;333(1):282–290. doi: 10.1006/abbi.1996.0392. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES