Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Aug 1;102(3):499–506. doi: 10.1172/JCI2992

Abrogation of autoimmune diabetes in nonobese diabetic mice and protection against effector lymphocytes by transgenic paracrine TGF-beta1.

M Moritani 1, K Yoshimoto 1, S F Wong 1, C Tanaka 1, T Yamaoka 1, T Sano 1, Y Komagata 1, J Miyazaki 1, H Kikutani 1, M Itakura 1
PMCID: PMC508910  PMID: 9691086

Abstract

Paracrine effect of transforming growth factor-beta1 (TGF-beta1) on autoimmune insulitis and diabetes was studied by transgenic production of the active form of porcine TGF-beta1 (pTGF-beta1) in pancreatic islet (islet) alpha cells in nonobese diabetic (NOD) mice under the control of rat glucagon promoter (RGP) (NOD-RGP-TGF-beta1). None of 27 NOD-RGP-TGF- beta1 mice developed diabetes by 45 wk of age, in contrast to 40 and 71% in male and female nontransgenic mice, respectively. None of the NOD-RGP-TGF-beta1 mice developed diabetes after cyclophosphamide (CY) administration. Adoptive transfer of splenocytes of NOD-RGP-TGF-beta1 mice to neonatal NOD mice did not transfer diabetes after CY administration. Adoptive transfer of three types of diabetogenic lymphocytes to NOD-RGP-TGF-beta1 and nontransgenic mice after CY administration led to the lower incidence of diabetes in NOD-RGP-TGF-beta1 mice versus that in nontransgenic mice: 29 vs. 77% for diabetogenic splenocytes, 25 vs. 75% for islet beta cell-specific Th1 clone cells, and 0 vs. 50% for islet beta cell-specific CD8(+) clone cells, respectively. Based on these, it is concluded that autoimmune diabetes in NOD mice is not a systemic disease and it can be completely prevented by the paracrine TGF-beta1 in the islet compartment through protection against CD4(+) and CD8(+) effector lymphocytes.

Full Text

The Full Text of this article is available as a PDF (411.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunner A. M., Marquardt H., Malacko A. R., Lioubin M. N., Purchio A. F. Site-directed mutagenesis of cysteine residues in the pro region of the transforming growth factor beta 1 precursor. Expression and characterization of mutant proteins. J Biol Chem. 1989 Aug 15;264(23):13660–13664. [PubMed] [Google Scholar]
  2. Chantry D., Turner M., Abney E., Feldmann M. Modulation of cytokine production by transforming growth factor-beta. J Immunol. 1989 Jun 15;142(12):4295–4300. [PubMed] [Google Scholar]
  3. Chen Y., Inobe J., Weiner H. L. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression. J Immunol. 1995 Jul 15;155(2):910–916. [PubMed] [Google Scholar]
  4. Chen Y., Kuchroo V. K., Inobe J., Hafler D. A., Weiner H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994 Aug 26;265(5176):1237–1240. doi: 10.1126/science.7520605. [DOI] [PubMed] [Google Scholar]
  5. Efrat S., Teitelman G., Anwar M., Ruggiero D., Hanahan D. Glucagon gene regulatory region directs oncoprotein expression to neurons and pancreatic alpha cells. Neuron. 1988 Sep;1(7):605–613. doi: 10.1016/0896-6273(88)90110-9. [DOI] [PubMed] [Google Scholar]
  6. Espevik T., Figari I. S., Shalaby M. R., Lackides G. A., Lewis G. D., Shepard H. M., Palladino M. A., Jr Inhibition of cytokine production by cyclosporin A and transforming growth factor beta. J Exp Med. 1987 Aug 1;166(2):571–576. doi: 10.1084/jem.166.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedman A., Weiner H. L. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6688–6692. doi: 10.1073/pnas.91.14.6688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fukaura H., Kent S. C., Pietrusewicz M. J., Khoury S. J., Weiner H. L., Hafler D. A. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest. 1996 Jul 1;98(1):70–77. doi: 10.1172/JCI118779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Groux H., O'Garra A., Bigler M., Rouleau M., Antonenko S., de Vries J. E., Roncarolo M. G. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997 Oct 16;389(6652):737–742. doi: 10.1038/39614. [DOI] [PubMed] [Google Scholar]
  10. Han H. S., Jun H. S., Utsugi T., Yoon J. W. A new type of CD4+ suppressor T cell completely prevents spontaneous autoimmune diabetes and recurrent diabetes in syngeneic islet-transplanted NOD mice. J Autoimmun. 1996 Jun;9(3):331–339. doi: 10.1006/jaut.1996.0045. [DOI] [PubMed] [Google Scholar]
  11. Hu-Li J., Huang H., Ryan J., Paul W. E. In differentiated CD4+ T cells, interleukin 4 production is cytokine-autonomous, whereas interferon gamma production is cytokine-dependent. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3189–3194. doi: 10.1073/pnas.94.7.3189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ikeda T., Lioubin M. N., Marquardt H. Human transforming growth factor type beta 2: production by a prostatic adenocarcinoma cell line, purification, and initial characterization. Biochemistry. 1987 May 5;26(9):2406–2410. doi: 10.1021/bi00383a002. [DOI] [PubMed] [Google Scholar]
  13. Kehrl J. H., Roberts A. B., Wakefield L. M., Jakowlew S., Sporn M. B., Fauci A. S. Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J Immunol. 1986 Dec 15;137(12):3855–3860. [PubMed] [Google Scholar]
  14. Kehrl J. H., Wakefield L. M., Roberts A. B., Jakowlew S., Alvarez-Mon M., Derynck R., Sporn M. B., Fauci A. S. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med. 1986 May 1;163(5):1037–1050. doi: 10.1084/jem.163.5.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kiefer R., Funa K., Schweitzer T., Jung S., Bourde O., Toyka K. V., Hartung H. P. Transforming growth factor-beta 1 in experimental autoimmune neuritis. Cellular localization and time course. Am J Pathol. 1996 Jan;148(1):211–223. [PMC free article] [PubMed] [Google Scholar]
  16. Kikutani H., Makino S. The murine autoimmune diabetes model: NOD and related strains. Adv Immunol. 1992;51:285–322. doi: 10.1016/s0065-2776(08)60490-3. [DOI] [PubMed] [Google Scholar]
  17. Kopp J. B., Factor V. M., Mozes M., Nagy P., Sanderson N., Böttinger E. P., Klotman P. E., Thorgeirsson S. S. Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest. 1996 Jun;74(6):991–1003. [PubMed] [Google Scholar]
  18. Kulkarni A. B., Huh C. G., Becker D., Geiser A., Lyght M., Flanders K. C., Roberts A. B., Sporn M. B., Ward J. M., Karlsson S. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):770–774. doi: 10.1073/pnas.90.2.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuruvilla A. P., Shah R., Hochwald G. M., Liggitt H. D., Palladino M. A., Thorbecke G. J. Protective effect of transforming growth factor beta 1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2918–2921. doi: 10.1073/pnas.88.7.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee M. S., Gu D., Feng L., Curriden S., Arnush M., Krahl T., Gurushanthaiah D., Wilson C., Loskutoff D. L., Fox H. Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of transforming growth factor-beta 1. Am J Pathol. 1995 Jul;147(1):42–52. [PMC free article] [PubMed] [Google Scholar]
  21. Lee M. S., Sawyer S., Arnush M., Krahl T., von Herrath M., Oldstone M. A., Sarvetnick N. Transforming growth factor-beta fails to inhibit allograft rejection or virus-induced autoimmune diabetes in transgenic mice. Transplantation. 1996 Apr 15;61(7):1112–1115. doi: 10.1097/00007890-199604150-00022. [DOI] [PubMed] [Google Scholar]
  22. Miller A., Lider O., Roberts A. B., Sporn M. B., Weiner H. L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):421–425. doi: 10.1073/pnas.89.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moritani M., Yoshimoto K., Ii S., Kondo M., Iwahana H., Yamaoka T., Sano T., Nakano N., Kikutani H., Itakura M. Prevention of adoptively transferred diabetes in nonobese diabetic mice with IL-10-transduced islet-specific Th1 lymphocytes. A gene therapy model for autoimmune diabetes. J Clin Invest. 1996 Oct 15;98(8):1851–1859. doi: 10.1172/JCI118986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moritani M., Yoshimoto K., Tashiro F., Hashimoto C., Miyazaki J., Ii S., Kudo E., Iwahana H., Hayashi Y., Sano T. Transgenic expression of IL-10 in pancreatic islet A cells accelerates autoimmune insulitis and diabetes in non-obese diabetic mice. Int Immunol. 1994 Dec;6(12):1927–1936. doi: 10.1093/intimm/6.12.1927. [DOI] [PubMed] [Google Scholar]
  25. Mueller R., Krahl T., Sarvetnick N. Pancreatic expression of interleukin-4 abrogates insulitis and autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med. 1996 Sep 1;184(3):1093–1099. doi: 10.1084/jem.184.3.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nakamura T., Kamogawa Y., Bottomly K., Flavell R. A. Polarization of IL-4- and IFN-gamma-producing CD4+ T cells following activation of naive CD4+ T cells. J Immunol. 1997 Feb 1;158(3):1085–1094. [PubMed] [Google Scholar]
  27. Nakamura T., Lee R. K., Nam S. Y., Podack E. R., Bottomly K., Flavell R. A. Roles of IL-4 and IFN-gamma in stabilizing the T helper cell type 1 and 2 phenotype. J Immunol. 1997 Mar 15;158(6):2648–2653. [PubMed] [Google Scholar]
  28. Nakano N., Kikutani H., Nishimoto H., Kishimoto T. T cell receptor V gene usage of islet beta cell-reactive T cells is not restricted in non-obese diabetic mice. J Exp Med. 1991 May 1;173(5):1091–1097. doi: 10.1084/jem.173.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pankewycz O. G., Guan J. X., Benedict J. F. A protective NOD islet-infiltrating CD8+ T cell clone, I.S. 2.15, has in vitro immunosuppressive properties. Eur J Immunol. 1992 Aug;22(8):2017–2023. doi: 10.1002/eji.1830220810. [DOI] [PubMed] [Google Scholar]
  30. Racke M. K., Dhib-Jalbut S., Cannella B., Albert P. S., Raine C. S., McFarlin D. E. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J Immunol. 1991 May 1;146(9):3012–3017. [PubMed] [Google Scholar]
  31. Rook A. H., Kehrl J. H., Wakefield L. M., Roberts A. B., Sporn M. B., Burlington D. B., Lane H. C., Fauci A. S. Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J Immunol. 1986 May 15;136(10):3916–3920. [PubMed] [Google Scholar]
  32. Samuel S. K., Hurta R. A., Kondaiah P., Khalil N., Turley E. A., Wright J. A., Greenberg A. H. Autocrine induction of tumor protease production and invasion by a metallothionein-regulated TGF-beta 1 (Ser223, 225). EMBO J. 1992 Apr;11(4):1599–1605. doi: 10.1002/j.1460-2075.1992.tb05205.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanvito F., Nichols A., Herrera P. L., Huarte J., Wohlwend A., Vassalli J. D., Orci L. TGF-beta 1 overexpression in murine pancreas induces chronic pancreatitis and, together with TNF-alpha, triggers insulin-dependent diabetes. Biochem Biophys Res Commun. 1995 Dec 26;217(3):1279–1286. doi: 10.1006/bbrc.1995.2906. [DOI] [PubMed] [Google Scholar]
  34. Shaw M. K., Lorens J. B., Dhawan A., DalCanto R., Tse H. Y., Tran A. B., Bonpane C., Eswaran S. L., Brocke S., Sarvetnick N. Local delivery of interleukin 4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 1997 May 5;185(9):1711–1714. doi: 10.1084/jem.185.9.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shull M. M., Ormsby I., Kier A. B., Pawlowski S., Diebold R. J., Yin M., Allen R., Sidman C., Proetzel G., Calvin D. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992 Oct 22;359(6397):693–699. doi: 10.1038/359693a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tisch R., McDevitt H. Insulin-dependent diabetes mellitus. Cell. 1996 May 3;85(3):291–297. doi: 10.1016/s0092-8674(00)81106-x. [DOI] [PubMed] [Google Scholar]
  37. Wahl S. M. Transforming growth factor beta (TGF-beta) in inflammation: a cause and a cure. J Clin Immunol. 1992 Mar;12(2):61–74. doi: 10.1007/BF00918135. [DOI] [PubMed] [Google Scholar]
  38. Wong F. S., Visintin I., Wen L., Flavell R. A., Janeway C. A., Jr CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. J Exp Med. 1996 Jan 1;183(1):67–76. doi: 10.1084/jem.183.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. von Herrath M. G., Dyrberg T., Oldstone M. B. Oral insulin treatment suppresses virus-induced antigen-specific destruction of beta cells and prevents autoimmune diabetes in transgenic mice. J Clin Invest. 1996 Sep 15;98(6):1324–1331. doi: 10.1172/JCI118919. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES