Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Oct 1;102(7):1377–1384. doi: 10.1172/JCI2191

The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle.

C Gauthier 1, V Leblais 1, L Kobzik 1, J N Trochu 1, N Khandoudi 1, A Bril 1, J L Balligand 1, H Le Marec 1
PMCID: PMC508985  PMID: 9769330

Abstract

Beta1- and beta2-adrenoceptors in heart muscle cells mediate the catecholamine-induced increase in the force and frequency of cardiac contraction. Recently, in addition, we demonstrated the functional expression of beta3-adrenoceptors in the human heart. Their stimulation, in marked contrast with that of beta1- and beta2-adrenoceptors, induces a decrease in contractility through presently unknown mechanisms. In the present study, we examined the role of a nitric oxide (NO) synthase pathway in mediating the beta3-adrenoceptor effect on the contractility of human endomyocardial biopsies. The negative inotropic effects of a beta3-adrenoceptor agonist, BRL 37344, and also of norepinephrine in the presence of alpha- and beta1-2-blockade were inhibited both by a nonspecific blocker of NO, methylene blue, and two NO synthase (NOS) inhibitors, L-N-monomethyl-arginine and L-nitroarginine-methyl ester. The effect of the NOS inhibitors was reversed by an excess of L-arginine, the natural substrate of NOS, but not by D-arginine. Moreover, the effects of the beta3-adrenoceptor agonist on contractility were associated with parallel increases in the production of NO and intracellular cGMP, which were also inhibited by NOS inhibitors. Immunohistochemical staining of human ventricular biopsies showed the expression of the endothelial constitutive (eNOS), but not the inducible (iNOS) isoform of NOS in both ventricular myocytes and endothelial cells. These results demonstrate that beta3-adrenoceptor stimulation decreases cardiac contractility through activation of an NOS pathway. Changes in the expression of this pathway may alter the balance between positive and negative inotropic effects of catecholamines on the heart potentially leading to myocardial dysfunction.

Full Text

The Full Text of this article is available as a PDF (288.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arch J. R., Kaumann A. J. Beta 3 and atypical beta-adrenoceptors. Med Res Rev. 1993 Nov;13(6):663–729. doi: 10.1002/med.2610130604. [DOI] [PubMed] [Google Scholar]
  2. Balligand J. L., Kelly R. A., Marsden P. A., Smith T. W., Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):347–351. doi: 10.1073/pnas.90.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balligand J. L., Kobzik L., Han X., Kaye D. M., Belhassen L., O'Hara D. S., Kelly R. A., Smith T. W., Michel T. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem. 1995 Jun 16;270(24):14582–14586. doi: 10.1074/jbc.270.24.14582. [DOI] [PubMed] [Google Scholar]
  4. Balligand J. L., Ungureanu-Longrois D., Simmons W. W., Pimental D., Malinski T. A., Kapturczak M., Taha Z., Lowenstein C. J., Davidoff A. J., Kelly R. A. Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem. 1994 Nov 4;269(44):27580–27588. [PubMed] [Google Scholar]
  5. Beavo J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995 Oct;75(4):725–748. doi: 10.1152/physrev.1995.75.4.725. [DOI] [PubMed] [Google Scholar]
  6. Bond R. A., Clarke D. E. Agonist and antagonist characterization of a putative adrenoceptor with distinct pharmacological properties from the alpha- and beta-subtypes. Br J Pharmacol. 1988 Nov;95(3):723–734. doi: 10.1111/j.1476-5381.1988.tb11698.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brady A. J., Warren J. B., Poole-Wilson P. A., Williams T. J., Harding S. E. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol. 1993 Jul;265(1 Pt 2):H176–H182. doi: 10.1152/ajpheart.1993.265.1.H176. [DOI] [PubMed] [Google Scholar]
  8. Bult H., Fret H. R., Van den Bossche R. M., Herman A. G. Platelet inhibition by endothelium-derived relaxing factor from the rabbit perfused aorta. Br J Pharmacol. 1988 Dec;95(4):1308–1314. doi: 10.1111/j.1476-5381.1988.tb11769.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Campbell D. L., Stamler J. S., Strauss H. C. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol. 1996 Oct;108(4):277–293. doi: 10.1085/jgp.108.4.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garthwaite J., Charles S. L., Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988 Nov 24;336(6197):385–388. doi: 10.1038/336385a0. [DOI] [PubMed] [Google Scholar]
  11. Gauthier C., Laurent K., Charpentier F., Drouin E., Chevallier J. C., Le Marec H. Endomyocardial biopsies: a new approach for studying the electrical and mechanical properties of human ventricular myocardium. J Mol Cell Cardiol. 1994 Oct;26(10):1267–1271. doi: 10.1006/jmcc.1994.1146. [DOI] [PubMed] [Google Scholar]
  12. Gauthier C., Tavernier G., Charpentier F., Langin D., Le Marec H. Functional beta3-adrenoceptor in the human heart. J Clin Invest. 1996 Jul 15;98(2):556–562. doi: 10.1172/JCI118823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gross W. L., Bak M. I., Ingwall J. S., Arstall M. A., Smith T. W., Balligand J. L., Kelly R. A. Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5604–5609. doi: 10.1073/pnas.93.11.5604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Han X., Kobzik L., Balligand J. L., Kelly R. A., Smith T. W. Nitric oxide synthase (NOS3)-mediated cholinergic modulation of Ca2+ current in adult rabbit atrioventricular nodal cells. Circ Res. 1996 Jun;78(6):998–1008. doi: 10.1161/01.res.78.6.998. [DOI] [PubMed] [Google Scholar]
  15. Han X., Kubota I., Feron O., Opel D. J., Arstall M. A., Zhao Y. Y., Huang P., Fishman M. C., Michel T., Kelly R. A. Muscarinic cholinergic regulation of cardiac myocyte ICa-L is absent in mice with targeted disruption of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6510–6515. doi: 10.1073/pnas.95.11.6510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hare J. M., Keaney J. F., Jr, Balligand J. L., Loscalzo J., Smith T. W., Colucci W. S. Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest. 1995 Jan;95(1):360–366. doi: 10.1172/JCI117664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hare J. M., Loh E., Creager M. A., Colucci W. S. Nitric oxide inhibits the positive inotropic response to beta-adrenergic stimulation in humans with left ventricular dysfunction. Circulation. 1995 Oct 15;92(8):2198–2203. doi: 10.1161/01.cir.92.8.2198. [DOI] [PubMed] [Google Scholar]
  18. Ishikawa Y., Homcy C. J. The adenylyl cyclases as integrators of transmembrane signal transduction. Circ Res. 1997 Mar;80(3):297–304. doi: 10.1161/01.res.80.3.297. [DOI] [PubMed] [Google Scholar]
  19. Kaumann A. J. (-)-CGP 12177-induced increase of human atrial contraction through a putative third beta-adrenoceptor. Br J Pharmacol. 1996 Jan;117(1):93–98. doi: 10.1111/j.1476-5381.1996.tb15159.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kaumann A. J. Four beta-adrenoceptor subtypes in the mammalian heart. Trends Pharmacol Sci. 1997 Mar;18(3):70–76. doi: 10.1016/s0165-6147(96)01033-4. [DOI] [PubMed] [Google Scholar]
  21. Kaumann A. J. Is there a third heart beta-adrenoceptor? Trends Pharmacol Sci. 1989 Aug;10(8):316–320. doi: 10.1016/0165-6147(89)90065-5. [DOI] [PubMed] [Google Scholar]
  22. Kaumann A. J., Molenaar P. Modulation of human cardiac function through 4 beta-adrenoceptor populations. Naunyn Schmiedebergs Arch Pharmacol. 1997 Jun;355(6):667–681. doi: 10.1007/pl00004999. [DOI] [PubMed] [Google Scholar]
  23. Keaney J. F., Jr, Hare J. M., Balligand J. L., Loscalzo J., Smith T. W., Colucci W. S. Inhibition of nitric oxide synthase augments myocardial contractile responses to beta-adrenergic stimulation. Am J Physiol. 1996 Dec;271(6 Pt 2):H2646–H2652. doi: 10.1152/ajpheart.1996.271.6.H2646. [DOI] [PubMed] [Google Scholar]
  24. Kelly R. A., Balligand J. L., Smith T. W. Nitric oxide and cardiac function. Circ Res. 1996 Sep;79(3):363–380. doi: 10.1161/01.res.79.3.363. [DOI] [PubMed] [Google Scholar]
  25. Liggett S. B., Freedman N. J., Schwinn D. A., Lefkowitz R. J. Structural basis for receptor subtype-specific regulation revealed by a chimeric beta 3/beta 2-adrenergic receptor. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3665–3669. doi: 10.1073/pnas.90.8.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lowes B. D., Minobe W., Abraham W. T., Rizeq M. N., Bohlmeyer T. J., Quaife R. A., Roden R. L., Dutcher D. L., Robertson A. D., Voelkel N. F. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest. 1997 Nov 1;100(9):2315–2324. doi: 10.1172/JCI119770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Malinowska B., Schlicker E. Mediation of the positive chronotropic effect of CGP 12177 and cyanopindolol in the pithed rat by atypical beta-adrenoceptors, different from beta 3-adrenoceptors. Br J Pharmacol. 1996 Mar;117(5):943–949. doi: 10.1111/j.1476-5381.1996.tb15285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Méry P. F., Lohmann S. M., Walter U., Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1197–1201. doi: 10.1073/pnas.88.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Méry P. F., Pavoine C., Belhassen L., Pecker F., Fischmeister R. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem. 1993 Dec 15;268(35):26286–26295. [PubMed] [Google Scholar]
  30. Shah A. M., Spurgeon H. A., Sollott S. J., Talo A., Lakatta E. G. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res. 1994 May;74(5):970–978. doi: 10.1161/01.res.74.5.970. [DOI] [PubMed] [Google Scholar]
  31. Torres J., Darley-Usmar V., Wilson M. T. Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem J. 1995 Nov 15;312(Pt 1):169–173. doi: 10.1042/bj3120169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Valenzuela D., Han X., Mende U., Fankhauser C., Mashimo H., Huang P., Pfeffer J., Neer E. J., Fishman M. C. G alpha(o) is necessary for muscarinic regulation of Ca2+ channels in mouse heart. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1727–1732. doi: 10.1073/pnas.94.5.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wahler G. M., Dollinger S. J. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol. 1995 Jan;268(1 Pt 1):C45–C54. doi: 10.1152/ajpcell.1995.268.1.C45. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES