Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 1;102(1):223–231. doi: 10.1172/JCI2323

Natural killer cells from human immunodeficiency virus (HIV)-infected individuals are an important source of CC-chemokines and suppress HIV-1 entry and replication in vitro.

A Oliva 1, A L Kinter 1, M Vaccarezza 1, A Rubbert 1, A Catanzaro 1, S Moir 1, J Monaco 1, L Ehler 1, S Mizell 1, R Jackson 1, Y Li 1, J W Romano 1, A S Fauci 1
PMCID: PMC509084  PMID: 9649576

Abstract

Macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES (regulated on activation, normal T cell expressed and secreted), which are the natural ligands of the CC-chemokine receptor CCR5, inhibit replication of MT-2- negative strains of HIV-1 by interfering with the ability of these strains to utilize CCR5 as a coreceptor for entry in CD4(+) cells. The present study investigates the capacity of natural killer (NK) cells isolated from HIV-infected individuals to produce CC-chemokines and to suppress HIV replication in autologous, endogenously infected cells as well as to block entry of MT-2-negative HIV into the CD4(+) T cell line PM-1. NK cells freshly isolated from HIV-infected individuals had a high number of mRNA copies for MIP-1alpha and RANTES. NK cells produced significant amounts of RANTES, MIP-1alpha, and MIP-1beta constitutively, in response to stimulation with IL-2 alone and when they were performing their characteristic lytic activity (K562 killing). After CD16 cross-linking and stimulation with IL-2 or IL-15 NK cells produced CC-chemokines to levels comparable to those produced by anti-CD3-stimulated CD8(+) T cells. Furthermore, CD16 cross-linked NK cells suppressed (49-97%) viral replication in cocultures of autologous CD8/NK-depleted PBMC to a degree similar to that of PHA or anti-CD3-stimulated CD8(+) T cells. In 50% of patients tested, NK-mediated HIV suppression could be abrogated by neutralizing antibodies to MIP-1alpha, MIP-1beta and RANTES; in contrast, CD8(+) T cell-mediated suppression was not significantly overcome upon neutralization of CC-chemokines. Supernatants derived from cultures of CD16 cross-linked NK cells stimulated with IL-2 or IL-15 dramatically inhibited entry of a MT-2-negative strain of HIV, BaL, in the CD4(+)CCR5(+) PM-1 T cell line. These data suggest that activated NK cells may be an important source of CC-chemokines in vivo and may suppress HIV replication by CC-chemokine-mediated mechanisms in addition to classic NK-mediated lytic mechanisms.

Full Text

The Full Text of this article is available as a PDF (238.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad A., Menezes J. Positive correlation between the natural killer and gp 120/41-specific antibody-dependent cellular cytotoxic effector functions in HIV-infected individuals. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Oct 1;10(2):115–119. doi: 10.1097/00042560-199510020-00002. [DOI] [PubMed] [Google Scholar]
  2. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955. [DOI] [PubMed] [Google Scholar]
  3. Amadori A., De Silvestro G., Zamarchi R., Veronese M. L., Mazza M. R., Schiavo G., Panozzo M., De Rossi A., Ometto L., Mous J. CD4 epitope masking by gp120/anti-gp120 antibody complexes. A potential mechanism for CD4+ cell function down-regulation in AIDS patients. J Immunol. 1992 May 1;148(9):2709–2716. [PubMed] [Google Scholar]
  4. Anegón I., Cuturi M. C., Trinchieri G., Perussia B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J Exp Med. 1988 Feb 1;167(2):452–472. doi: 10.1084/jem.167.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bluman E. M., Bartynski K. J., Avalos B. R., Caligiuri M. A. Human natural killer cells produce abundant macrophage inflammatory protein-1 alpha in response to monocyte-derived cytokines. J Clin Invest. 1996 Jun 15;97(12):2722–2727. doi: 10.1172/JCI118726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brenner B. G., Gornitsky M., Wainberg M. A. Interleukin-2-inducible natural immune (lymphokine-activated killer cell) responses as a functional correlate of progression to AIDS. Clin Diagn Lab Immunol. 1994 Sep;1(5):538–544. doi: 10.1128/cdli.1.5.538-544.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carson W. E., Giri J. G., Lindemann M. J., Linett M. L., Ahdieh M., Paxton R., Anderson D., Eisenmann J., Grabstein K., Caligiuri M. A. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med. 1994 Oct 1;180(4):1395–1403. doi: 10.1084/jem.180.4.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chehimi J., Marshall J. D., Salvucci O., Frank I., Chehimi S., Kawecki S., Bacheller D., Rifat S., Chouaib S. IL-15 enhances immune functions during HIV infection. J Immunol. 1997 Jun 15;158(12):5978–5987. [PubMed] [Google Scholar]
  9. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., Mackay C. R., LaRosa G., Newman W. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996 Jun 28;85(7):1135–1148. doi: 10.1016/s0092-8674(00)81313-6. [DOI] [PubMed] [Google Scholar]
  10. Clerici M., Lucey D. R., Berzofsky J. A., Pinto L. A., Wynn T. A., Blatt S. P., Dolan M. J., Hendrix C. W., Wolf S. F., Shearer G. M. Restoration of HIV-specific cell-mediated immune responses by interleukin-12 in vitro. Science. 1993 Dec 10;262(5140):1721–1724. doi: 10.1126/science.7903123. [DOI] [PubMed] [Google Scholar]
  11. Cocchi F., DeVico A. L., Garzino-Demo A., Arya S. K., Gallo R. C., Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995 Dec 15;270(5243):1811–1815. doi: 10.1126/science.270.5243.1811. [DOI] [PubMed] [Google Scholar]
  12. D'Souza M. P., Harden V. A. Chemokines and HIV-1 second receptors. Confluence of two fields generates optimism in AIDS research. Nat Med. 1996 Dec;2(12):1293–1300. doi: 10.1038/nm1296-1293. [DOI] [PubMed] [Google Scholar]
  13. De Paoli P., Zanussi S., Simonelli C., Bortolin M. T., D'Andrea M., Crepaldi C., Talamini R., Comar M., Giacca M., Tirelli U. Effects of subcutaneous interleukin-2 therapy on CD4 subsets and in vitro cytokine production in HIV+ subjects. J Clin Invest. 1997 Dec 1;100(11):2737–2743. doi: 10.1172/JCI119819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dean M., Carrington M., Winkler C., Huttley G. A., Smith M. W., Allikmets R., Goedert J. J., Buchbinder S. P., Vittinghoff E., Gomperts E. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996 Sep 27;273(5283):1856–1862. doi: 10.1126/science.273.5283.1856. [DOI] [PubMed] [Google Scholar]
  15. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996 Jun 20;381(6584):661–666. doi: 10.1038/381661a0. [DOI] [PubMed] [Google Scholar]
  16. Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C., Parmentier M., Collman R. G., Doms R. W. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell. 1996 Jun 28;85(7):1149–1158. doi: 10.1016/s0092-8674(00)81314-8. [DOI] [PubMed] [Google Scholar]
  17. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996 Jun 20;381(6584):667–673. doi: 10.1038/381667a0. [DOI] [PubMed] [Google Scholar]
  18. Eugen-Olsen J., Iversen A. K., Garred P., Koppelhus U., Pedersen C., Benfield T. L., Sorensen A. M., Katzenstein T., Dickmeiss E., Gerstoft J. Heterozygosity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 T-cell decline in a cohort of HIV-seropositive individuals. AIDS. 1997 Mar;11(3):305–310. doi: 10.1097/00002030-199703110-00007. [DOI] [PubMed] [Google Scholar]
  19. Furci L., Scarlatti G., Burastero S., Tambussi G., Colognesi C., Quillent C., Longhi R., Loverro P., Borgonovo B., Gaffi D. Antigen-driven C-C chemokine-mediated HIV-1 suppression by CD4(+) T cells from exposed uninfected individuals expressing the wild-type CCR-5 allele. J Exp Med. 1997 Aug 4;186(3):455–460. doi: 10.1084/jem.186.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huang Y., Paxton W. A., Wolinsky S. M., Neumann A. U., Zhang L., He T., Kang S., Ceradini D., Jin Z., Yazdanbakhsh K. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med. 1996 Nov;2(11):1240–1243. doi: 10.1038/nm1196-1240. [DOI] [PubMed] [Google Scholar]
  21. Jewett A., Gan X. H., Lebow L. T., Bonavida B. Differential secretion of TNF-alpha and IFN-gamma by human peripheral blood-derived NK subsets and association with functional maturation. J Clin Immunol. 1996 Jan;16(1):46–54. doi: 10.1007/BF01540972. [DOI] [PubMed] [Google Scholar]
  22. Kievits T., van Gemen B., van Strijp D., Schukkink R., Dircks M., Adriaanse H., Malek L., Sooknanan R., Lens P. NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods. 1991 Dec;35(3):273–286. doi: 10.1016/0166-0934(91)90069-c. [DOI] [PubMed] [Google Scholar]
  23. Kinter A. L., Ostrowski M., Goletti D., Oliva A., Weissman D., Gantt K., Hardy E., Jackson R., Ehler L., Fauci A. S. HIV replication in CD4+ T cells of HIV-infected individuals is regulated by a balance between the viral suppressive effects of endogenous beta-chemokines and the viral inductive effects of other endogenous cytokines. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14076–14081. doi: 10.1073/pnas.93.24.14076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kovacs J. A., Vogel S., Albert J. M., Falloon J., Davey R. T., Jr, Walker R. E., Polis M. A., Spooner K., Metcalf J. A., Baseler M. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med. 1996 Oct 31;335(18):1350–1356. doi: 10.1056/NEJM199610313351803. [DOI] [PubMed] [Google Scholar]
  25. Lane H. C., Masur H., Edgar L. C., Whalen G., Rook A. H., Fauci A. S. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med. 1983 Aug 25;309(8):453–458. doi: 10.1056/NEJM198308253090803. [DOI] [PubMed] [Google Scholar]
  26. Lanier L. L., Phillips J. H. Inhibitory MHC class I receptors on NK cells and T cells. Immunol Today. 1996 Feb;17(2):86–91. doi: 10.1016/0167-5699(96)80585-8. [DOI] [PubMed] [Google Scholar]
  27. Levy J. A., Mackewicz C. E., Barker E. Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunol Today. 1996 May;17(5):217–224. doi: 10.1016/0167-5699(96)10011-6. [DOI] [PubMed] [Google Scholar]
  28. Liu R., Paxton W. A., Choe S., Ceradini D., Martin S. R., Horuk R., MacDonald M. E., Stuhlmann H., Koup R. A., Landau N. R. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996 Aug 9;86(3):367–377. doi: 10.1016/s0092-8674(00)80110-5. [DOI] [PubMed] [Google Scholar]
  29. Michael N. L., Chang G., Louie L. G., Mascola J. R., Dondero D., Birx D. L., Sheppard H. W. The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med. 1997 Mar;3(3):338–340. doi: 10.1038/nm0397-338. [DOI] [PubMed] [Google Scholar]
  30. Moore J. P., Trkola A., Dragic T. Co-receptors for HIV-1 entry. Curr Opin Immunol. 1997 Aug;9(4):551–562. doi: 10.1016/s0952-7915(97)80110-0. [DOI] [PubMed] [Google Scholar]
  31. Moretta A., Bottino C., Vitale M., Pende D., Biassoni R., Mingari M. C., Moretta L. Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol. 1996;14:619–648. doi: 10.1146/annurev.immunol.14.1.619. [DOI] [PubMed] [Google Scholar]
  32. Moriuchi H., Moriuchi M., Combadiere C., Murphy P. M., Fauci A. S. CD8+ T-cell-derived soluble factor(s), but not beta-chemokines RANTES, MIP-1 alpha, and MIP-1 beta, suppress HIV-1 replication in monocyte/macrophages. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15341–15345. doi: 10.1073/pnas.93.26.15341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moriuchi H., Moriuchi M., Fauci A. S. Nuclear factor-kappa B potently up-regulates the promoter activity of RANTES, a chemokine that blocks HIV infection. J Immunol. 1997 Apr 1;158(7):3483–3491. [PubMed] [Google Scholar]
  34. Nelson P. J., Ortiz B. D., Pattison J. M., Krensky A. M. Identification of a novel regulatory region critical for expression of the RANTES chemokine in activated T lymphocytes. J Immunol. 1996 Aug 1;157(3):1139–1148. [PubMed] [Google Scholar]
  35. Pal R., Garzino-Demo A., Markham P. D., Burns J., Brown M., Gallo R. C., DeVico A. L. Inhibition of HIV-1 infection by the beta-chemokine MDC. Science. 1997 Oct 24;278(5338):695–698. doi: 10.1126/science.278.5338.695. [DOI] [PubMed] [Google Scholar]
  36. Pape G. R., Troye M., Axelsson B., Perlmann P. Simultaneous occurrence of immunoglobulin-dependent and immunoglobulin-independent mechanisms in natural cytotoxicity of human lymphocytes. J Immunol. 1979 Jun;122(6):2251–2260. [PubMed] [Google Scholar]
  37. Ratcliffe L. T., Lukey P. T., MacKenzie C. R., Ress S. R. Reduced NK activity correlates with active disease in HIV- patients with multidrug-resistant pulmonary tuberculosis. Clin Exp Immunol. 1994 Sep;97(3):373–379. doi: 10.1111/j.1365-2249.1994.tb06097.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Robertson M. J., Soiffer R. J., Wolf S. F., Manley T. J., Donahue C., Young D., Herrmann S. H., Ritz J. Response of human natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J Exp Med. 1992 Mar 1;175(3):779–788. doi: 10.1084/jem.175.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Romano J. W., Williams K. G., Shurtliff R. N., Ginocchio C., Kaplan M. NASBA technology: isothermal RNA amplification in qualitative and quantitative diagnostics. Immunol Invest. 1997 Jan-Feb;26(1-2):15–28. doi: 10.3109/08820139709048912. [DOI] [PubMed] [Google Scholar]
  40. Rook A. H., Lane H. C., Folks T., McCoy S., Alter H., Fauci A. S. Sera from HTLV-III/LAV antibody-positive individuals mediate antibody-dependent cellular cytotoxicity against HTLV-III/LAV-infected T cells. J Immunol. 1987 Feb 15;138(4):1064–1067. [PubMed] [Google Scholar]
  41. Ruscetti F. W., Mikovits J. A., Kalyanaraman V. S., Overton R., Stevenson H., Stromberg K., Herberman R. B., Farrar W. L., Ortaldo J. R. Analysis of effector mechanisms against HTLV-I- and HTLV-III/LAV-infected lymphoid cells. J Immunol. 1986 May 15;136(10):3619–3624. [PubMed] [Google Scholar]
  42. Saha K., Bentsman G., Chess L., Volsky D. J. Endogenous production of beta-chemokines by CD4+, but not CD8+, T-cell clones correlates with the clinical state of human immunodeficiency virus type 1 (HIV-1)-infected individuals and may be responsible for blocking infection with non-syncytium-inducing HIV-1 in vitro. J Virol. 1998 Jan;72(1):876–881. doi: 10.1128/jvi.72.1.876-881.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Samson M., Libert F., Doranz B. J., Rucker J., Liesnard C., Farber C. M., Saragosti S., Lapoumeroulie C., Cognaux J., Forceille C. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996 Aug 22;382(6593):722–725. doi: 10.1038/382722a0. [DOI] [PubMed] [Google Scholar]
  44. Scala E., D'Offizi G., Rosso R., Turriziani O., Ferrara R., Mazzone A. M., Antonelli G., Aiuti F., Paganelli R. C-C chemokines, IL-16, and soluble antiviral factor activity are increased in cloned T cells from subjects with long-term nonprogressive HIV infection. J Immunol. 1997 May 1;158(9):4485–4492. [PubMed] [Google Scholar]
  45. Schwartz D. H., Skowron G., Merigan T. C. Safety and effects of interleukin-2 plus zidovudine in asymptomatic individuals infected with human immunodeficiency virus. J Acquir Immune Defic Syndr. 1991;4(1):11–23. [PubMed] [Google Scholar]
  46. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Trinchieri G., Matsumoto-Kobayashi M., Clark S. C., Seehra J., London L., Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med. 1984 Oct 1;160(4):1147–1169. doi: 10.1084/jem.160.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Trinchieri G., Valiante N. Receptors for the Fc fragment of IgG on natural killer cells. Nat Immun. 1993 Jul-Oct;12(4-5):218–234. [PubMed] [Google Scholar]
  49. Verani A., Scarlatti G., Comar M., Tresoldi E., Polo S., Giacca M., Lusso P., Siccardi A. G., Vercelli D. C-C chemokines released by lipopolysaccharide (LPS)-stimulated human macrophages suppress HIV-1 infection in both macrophages and T cells. J Exp Med. 1997 Mar 3;185(5):805–816. doi: 10.1084/jem.185.5.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wagner L., Yang O. O., Garcia-Zepeda E. A., Ge Y., Kalams S. A., Walker B. D., Pasternack M. S., Luster A. D. Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature. 1998 Feb 26;391(6670):908–911. doi: 10.1038/36129. [DOI] [PubMed] [Google Scholar]
  51. Walker C. M., Moody D. J., Stites D. P., Levy J. A. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science. 1986 Dec 19;234(4783):1563–1566. doi: 10.1126/science.2431484. [DOI] [PubMed] [Google Scholar]
  52. Willey R. L., Smith D. H., Lasky L. A., Theodore T. S., Earl P. L., Moss B., Capon D. J., Martin M. A. In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. J Virol. 1988 Jan;62(1):139–147. doi: 10.1128/jvi.62.1.139-147.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yang O. O., Walker B. D. CD8+ cells in human immunodeficiency virus type I pathogenesis: cytolytic and noncytolytic inhibition of viral replication. Adv Immunol. 1997;66:273–311. doi: 10.1016/s0065-2776(08)60600-8. [DOI] [PubMed] [Google Scholar]
  54. Zack J. A., Arrigo S. J., Weitsman S. R., Go A. S., Haislip A., Chen I. S. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990 Apr 20;61(2):213–222. doi: 10.1016/0092-8674(90)90802-l. [DOI] [PubMed] [Google Scholar]
  55. Zagury D., Lachgar A., Chams V., Fall L. S., Bernard J., Zagury J. F., Bizzini B., Gringeri A., Santagostino E., Rappaport J. C-C chemokines, pivotal in protection against HIV type 1 infection. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3857–3861. doi: 10.1073/pnas.95.7.3857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. van Lier R. A., Brouwer M., Rebel V. I., van Noesel C. J., Aarden L. A. Immobilized anti-CD3 monoclonal antibodies induce accessory cell-independent lymphokine production, proliferation and helper activity in human T lymphocytes. Immunology. 1989 Sep;68(1):45–50. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES