Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Sep 15;102(6):1258–1264. doi: 10.1172/JCI4004

Tumor immunity and autoimmunity induced by immunization with homologous DNA.

L W Weber 1, W B Bowne 1, J D Wolchok 1, R Srinivasan 1, J Qin 1, Y Moroi 1, R Clynes 1, P Song 1, J J Lewis 1, A N Houghton 1
PMCID: PMC509109  PMID: 9739060

Abstract

The immune system can recognize self antigens expressed by cancer cells. Differentiation antigens are prototypes of these self antigens, being expressed by cancer cells and their normal cell counterparts. The tyrosinase family proteins are well characterized differentiation antigens recognized by antibodies and T cells of patients with melanoma. However, immune tolerance may prevent immunity directed against these antigens. Immunity to the brown locus protein, gp75/ tyrosinase-related protein-1, was investigated in a syngeneic mouse model. C57BL/6 mice, which are tolerant to gp75, generated autoantibodies against gp75 after immunization with DNA encoding human gp75 but not syngeneic mouse gp75. Priming with human gp75 DNA broke tolerance to mouse gp75. Immunity against mouse gp75 provided significant tumor protection. Manifestations of autoimmunity were observed, characterized by coat depigmentation. Rejection of tumor challenge required CD4(+) and NK1.1(+) cells and Fc receptor gamma-chain, but depigmentation did not require these components. Thus, immunization with homologous DNA broke tolerance against mouse gp75, possibly by providing help from CD4(+) T cells. Mechanisms required for tumor protection were not necessary for autoimmunity, demonstrating that tumor immunity can be uncoupled from autoimmune manifestations.

Full Text

The Full Text of this article is available as a PDF (258.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakker A. B., Schreurs M. W., de Boer A. J., Kawakami Y., Rosenberg S. A., Adema G. J., Figdor C. G. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med. 1994 Mar 1;179(3):1005–1009. doi: 10.1084/jem.179.3.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boon T, Old LJ. Cancer Tumor antigens. Curr Opin Immunol. 1997 Oct 1;9(5):681–683. doi: 10.1016/s0952-7915(97)80049-0. [DOI] [PubMed] [Google Scholar]
  3. Brichard V., Van Pel A., Wölfel T., Wölfel C., De Plaen E., Lethé B., Coulie P., Boon T. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 1993 Aug 1;178(2):489–495. doi: 10.1084/jem.178.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clynes R., Takechi Y., Moroi Y., Houghton A., Ravetch J. V. Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):652–656. doi: 10.1073/pnas.95.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fidler I. J. Selection of successive tumour lines for metastasis. Nat New Biol. 1973 Apr 4;242(118):148–149. doi: 10.1038/newbio242148a0. [DOI] [PubMed] [Google Scholar]
  6. Hara I., Nguyen H., Takechi Y., Gansbacher B., Chapman P. B., Houghton A. N. Rejection of mouse melanoma elicited by local secretion of interleukin-2: implicating macrophages without T cells or natural killer cells in tumor rejection. Int J Cancer. 1995 Apr 10;61(2):253–260. doi: 10.1002/ijc.2910610219. [DOI] [PubMed] [Google Scholar]
  7. Hara I., Takechi Y., Houghton A. N. Implicating a role for immune recognition of self in tumor rejection: passive immunization against the brown locus protein. J Exp Med. 1995 Nov 1;182(5):1609–1614. doi: 10.1084/jem.182.5.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hearing V. J., Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J. 1991 Nov;5(14):2902–2909. [PubMed] [Google Scholar]
  9. Houghton A. N. Cancer antigens: immune recognition of self and altered self. J Exp Med. 1994 Jul 1;180(1):1–4. doi: 10.1084/jem.180.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Houghton A. N., Eisinger M., Albino A. P., Cairncross J. G., Old L. J. Surface antigens of melanocytes and melanomas. Markers of melanocyte differentiation and melanoma subsets. J Exp Med. 1982 Dec 1;156(6):1755–1766. doi: 10.1084/jem.156.6.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kawakami Y., Eliyahu S., Delgado C. H., Robbins P. F., Sakaguchi K., Appella E., Yannelli J. R., Adema G. J., Miki T., Rosenberg S. A. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6458–6462. doi: 10.1073/pnas.91.14.6458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kemp E. H., Gawkrodger D. J., MacNeil S., Watson P. F., Weetman A. P. Detection of tyrosinase autoantibodies in patients with vitiligo using 35S-labeled recombinant human tyrosinase in a radioimmunoassay. J Invest Dermatol. 1997 Jul;109(1):69–73. doi: 10.1111/1523-1747.ep12276556. [DOI] [PubMed] [Google Scholar]
  13. Kemp E. H., Gawkrodger D. J., Watson P. F., Weetman A. P. Immunoprecipitation of melanogenic enzyme autoantigens with vitiligo sera: evidence for cross-reactive autoantibodies to tyrosinase and tyrosinase-related protein-2 (TRP-2). Clin Exp Immunol. 1997 Sep;109(3):495–500. doi: 10.1046/j.1365-2249.1997.4781381.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loftus D. J., Castelli C., Clay T. M., Squarcina P., Marincola F. M., Nishimura M. I., Parmiani G., Appella E., Rivoltini L. Identification of epitope mimics recognized by CTL reactive to the melanoma/melanocyte-derived peptide MART-1(27-35). J Exp Med. 1996 Aug 1;184(2):647–657. doi: 10.1084/jem.184.2.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marincola F. M., Rivoltini L., Salgaller M. L., Player M., Rosenberg S. A. Differential anti-MART-1/MelanA CTL activity in peripheral blood of HLA-A2 melanoma patients in comparison to healthy donors: evidence of in vivo priming by tumor cells. J Immunother Emphasis Tumor Immunol. 1996 Jul;19(4):266–277. doi: 10.1097/00002371-199607000-00003. [DOI] [PubMed] [Google Scholar]
  16. Merimsky O., Baharav E., Shoenfeld Y., Chaitchik S., Tsigelman R., Cohen-Aloro D., Fishman P. Anti-tyrosinase antibodies in malignant melanoma. Cancer Immunol Immunother. 1996 Jun;42(5):297–302. doi: 10.1007/s002620050286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Naftzger C., Takechi Y., Kohda H., Hara I., Vijayasaradhi S., Houghton A. N. Immune response to a differentiation antigen induced by altered antigen: a study of tumor rejection and autoimmunity. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14809–14814. doi: 10.1073/pnas.93.25.14809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Old L. J., Chen Y. T. New paths in human cancer serology. J Exp Med. 1998 Apr 20;187(8):1163–1167. doi: 10.1084/jem.187.8.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pardoll D. M. Tumour antigens. A new look for the 1990s. Nature. 1994 Jun 2;369(6479):357–357. doi: 10.1038/369357a0. [DOI] [PubMed] [Google Scholar]
  20. Rahemtulla A., Fung-Leung W. P., Schilham M. W., Kündig T. M., Sambhara S. R., Narendran A., Arabian A., Wakeham A., Paige C. J., Zinkernagel R. M. Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature. 1991 Sep 12;353(6340):180–184. doi: 10.1038/353180a0. [DOI] [PubMed] [Google Scholar]
  21. Robbins P. F., El-Gamil M., Li Y. F., Kawakami Y., Loftus D., Appella E., Rosenberg S. A. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med. 1996 Mar 1;183(3):1185–1192. doi: 10.1084/jem.183.3.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robbins P. F., el-Gamil M., Kawakami Y., Stevens E., Yannelli J. R., Rosenberg S. A. Recognition of tyrosinase by tumor-infiltrating lymphocytes from a patient responding to immunotherapy. Cancer Res. 1994 Jun 15;54(12):3124–3126. [PubMed] [Google Scholar]
  23. Ross H. M., Weber L. W., Wang S., Piskun G., Dyall R., Song P., Takechi Y., Nikolić-Zugić J., Houghton A. N., Lewis J. J. Priming for T-cell-mediated rejection of established tumors by cutaneous DNA immunization. Clin Cancer Res. 1997 Dec;3(12 Pt 1):2191–2196. [PubMed] [Google Scholar]
  24. Shibahara S., Tomita Y., Sakakura T., Nager C., Chaudhuri B., Müller R. Cloning and expression of cDNA encoding mouse tyrosinase. Nucleic Acids Res. 1986 Mar 25;14(6):2413–2427. doi: 10.1093/nar/14.6.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Song Y. H., Connor E., Li Y., Zorovich B., Balducci P., Maclaren N. The role of tyrosinase in autoimmune vitiligo. Lancet. 1994 Oct 15;344(8929):1049–1052. doi: 10.1016/s0140-6736(94)91709-4. [DOI] [PubMed] [Google Scholar]
  26. Stockert E., Jäger E., Chen Y. T., Scanlan M. J., Gout I., Karbach J., Arand M., Knuth A., Old L. J. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med. 1998 Apr 20;187(8):1349–1354. doi: 10.1084/jem.187.8.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sylvestre D. L., Ravetch J. V. Fc receptors initiate the Arthus reaction: redefining the inflammatory cascade. Science. 1994 Aug 19;265(5175):1095–1098. doi: 10.1126/science.8066448. [DOI] [PubMed] [Google Scholar]
  28. Thomson T. M., Real F. X., Murakami S., Cordon-Cardo C., Old L. J., Houghton A. N. Differentiation antigens of melanocytes and melanoma: analysis of melanosome and cell surface markers of human pigmented cells with monoclonal antibodies. J Invest Dermatol. 1988 Apr;90(4):459–466. doi: 10.1111/1523-1747.ep12460906. [DOI] [PubMed] [Google Scholar]
  29. Topalian S. L., Rivoltini L., Mancini M., Markus N. R., Robbins P. F., Kawakami Y., Rosenberg S. A. Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9461–9465. doi: 10.1073/pnas.91.20.9461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vijayasaradhi S., Bouchard B., Houghton A. N. The melanoma antigen gp75 is the human homologue of the mouse b (brown) locus gene product. J Exp Med. 1990 Apr 1;171(4):1375–1380. doi: 10.1084/jem.171.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vijayasaradhi S., Xu Y., Bouchard B., Houghton A. N. Intracellular sorting and targeting of melanosomal membrane proteins: identification of signals for sorting of the human brown locus protein, gp75. J Cell Biol. 1995 Aug;130(4):807–820. doi: 10.1083/jcb.130.4.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang R. F., Appella E., Kawakami Y., Kang X., Rosenberg S. A. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med. 1996 Dec 1;184(6):2207–2216. doi: 10.1084/jem.184.6.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wang R. F., Robbins P. F., Kawakami Y., Kang X. Q., Rosenberg S. A. Identification of a gene encoding a melanoma tumor antigen recognized by HLA-A31-restricted tumor-infiltrating lymphocytes. J Exp Med. 1995 Feb 1;181(2):799–804. doi: 10.1084/jem.181.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wölfel T., Hauer M., Schneider J., Serrano M., Wölfel C., Klehmann-Hieb E., De Plaen E., Hankeln T., Meyer zum Büschenfelde K. H., Beach D. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science. 1995 Sep 1;269(5228):1281–1284. doi: 10.1126/science.7652577. [DOI] [PubMed] [Google Scholar]
  35. Xu Y., Setaluri V., Takechi Y., Houghton A. N. Sorting and secretion of a melanosome membrane protein, gp75/TRP1. J Invest Dermatol. 1997 Dec;109(6):788–795. doi: 10.1111/1523-1747.ep12340971. [DOI] [PubMed] [Google Scholar]
  36. van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647. doi: 10.1126/science.1840703. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES