Abstract
The cortical thick ascending limb (CTAL) absorbs Cl- via a Na+-K+-Cl- cotransport at the apical membrane and several Cl- channels at the basolateral membrane, including a 9-pS channel having several properties of the cystic fibrosis transmembrane conductance regulator (CFTR). Having checked that CFTR mRNA is present in the mouse CTAL, we investigated whether this channel is a CFTR molecule by applying the patch-clamp technique to CTALs microdissected from CFTR knockout mice (cftrm1Unc). The 9-pS channel was active in cell-attached patches from tubules of mice homozygous for the disrupted cftr gene [CFTR (-/-)] at the same frequency and with the same activity (NPo) as in normal [CFTR (+/+)] or heterozygous [CFTR (+/-)] mice. The conductive properties of the channel, studied on inside-out patches, were identical in CFTR (-/-), CFTR (+/+), and CFTR (+/-) tubules, as were the sensitivities to internal pH and internal ATP, two typical features of this channel. In addition, the Cl- absorption in isolated, microperfused CTALs and the Na+-K+-Cl- cotransport activity were identical in CFTR (-/-), CFTR (+/+), and CFTR (+/-) mice. These results show that the 9-pS Cl- channel is distinct from CFTR, and that the CFTR protein has no influence on the Cl- absorption in this part of the renal tubule.
Full Text
The Full Text of this article is available as a PDF (275.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amlal H., Legoff C., Vernimmen C., Paillard M., Bichara M. Na(+)-K+(NH4+)-2Cl- cotransport in medullary thick ascending limb: control by PKA, PKC, and 20-HETE. Am J Physiol. 1996 Aug;271(2 Pt 1):C455–C463. doi: 10.1152/ajpcell.1996.271.2.C455. [DOI] [PubMed] [Google Scholar]
- Bailly C., Imbert-Teboul M., Roinel N., Amiel C. Isoproterenol increases Ca, Mg, and NaCl reabsorption in mouse thick ascending limb. Am J Physiol. 1990 May;258(5 Pt 2):F1224–F1231. doi: 10.1152/ajprenal.1990.258.5.F1224. [DOI] [PubMed] [Google Scholar]
- Carson M. R., Winter M. C., Travis S. M., Welsh M. J. Pyrophosphate stimulates wild-type and mutant cystic fibrosis transmembrane conductance regulator Cl- channels. J Biol Chem. 1995 Sep 1;270(35):20466–20472. doi: 10.1074/jbc.270.35.20466. [DOI] [PubMed] [Google Scholar]
- Clarke L. L., Grubb B. R., Gabriel S. E., Smithies O., Koller B. H., Boucher R. C. Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science. 1992 Aug 21;257(5073):1125–1128. doi: 10.1126/science.257.5073.1125. [DOI] [PubMed] [Google Scholar]
- Clarke L. L., Grubb B. R., Yankaskas J. R., Cotton C. U., McKenzie A., Boucher R. C. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):479–483. doi: 10.1073/pnas.91.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford I., Maloney P. C., Zeitlin P. L., Guggino W. B., Hyde S. C., Turley H., Gatter K. C., Harris A., Higgins C. F. Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9262–9266. doi: 10.1073/pnas.88.20.9262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devuyst O., Burrow C. R., Schwiebert E. M., Guggino W. B., Wilson P. D. Developmental regulation of CFTR expression during human nephrogenesis. Am J Physiol. 1996 Sep;271(3 Pt 2):F723–F735. doi: 10.1152/ajprenal.1996.271.3.F723. [DOI] [PubMed] [Google Scholar]
- Duong Van Huyen J., Bens M., Vandewalle A. Differential effects of aldosterone and vasopressin on chloride fluxes in transimmortalized mouse cortical collecting duct cells. J Membr Biol. 1998 Jul 1;164(1):79–90. doi: 10.1007/s002329900395. [DOI] [PubMed] [Google Scholar]
- Fong P., Jentsch T. J. Molecular basis of epithelial Cl channels. J Membr Biol. 1995 Apr;144(3):189–197. doi: 10.1007/BF00236832. [DOI] [PubMed] [Google Scholar]
- French P. J., van Doorninck J. H., Peters R. H., Verbeek E., Ameen N. A., Marino C. R., de Jonge H. R., Bijman J., Scholte B. J. A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo. J Clin Invest. 1996 Sep 15;98(6):1304–1312. doi: 10.1172/JCI118917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grubb B. R. Ion transport across the jejunum in normal and cystic fibrosis mice. Am J Physiol. 1995 Mar;268(3 Pt 1):G505–G513. doi: 10.1152/ajpgi.1995.268.3.G505. [DOI] [PubMed] [Google Scholar]
- Grubb B. R., Paradiso A. M., Boucher R. C. Anomalies in ion transport in CF mouse tracheal epithelium. Am J Physiol. 1994 Jul;267(1 Pt 1):C293–C300. doi: 10.1152/ajpcell.1994.267.1.C293. [DOI] [PubMed] [Google Scholar]
- Guinamard R., Chraïbi A., Teulon J. A small-conductance Cl- channel in the mouse thick ascending limb that is activated by ATP and protein kinase A. J Physiol. 1995 May 15;485(Pt 1):97–112. doi: 10.1113/jphysiol.1995.sp020715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guinamard R., Paulais M., Teulon J. Inhibition of a small-conductance cAMP-dependent Cl- channel in the mouse thick ascending limb at low internal pH. J Physiol. 1996 Feb 1;490(Pt 3):759–765. doi: 10.1113/jphysiol.1996.sp021183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunderson K. L., Kopito R. R. Effects of pyrophosphate and nucleotide analogs suggest a role for ATP hydrolysis in cystic fibrosis transmembrane regulator channel gating. J Biol Chem. 1994 Jul 29;269(30):19349–19353. [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Kikeri D., Sun A., Zeidel M. L., Hebert S. C. Cell membranes impermeable to NH3. Nature. 1989 Jun 8;339(6224):478–480. doi: 10.1038/339478a0. [DOI] [PubMed] [Google Scholar]
- Lansdell K. A., Delaney S. J., Lunn D. P., Thomson S. A., Sheppard D. N., Wainwright B. J. Comparison of the gating behaviour of human and murine cystic fibrosis transmembrane conductance regulator Cl- channels expressed in mammalian cells. J Physiol. 1998 Apr 15;508(Pt 2):379–392. doi: 10.1111/j.1469-7793.1998.379bq.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leung A. Y., Wong P. Y., Gabriel S. E., Yankaskas J. R., Boucher R. C. cAMP- but not Ca(2+)-regulated Cl- conductance in the oviduct is defective in mouse model of cystic fibrosis. Am J Physiol. 1995 Mar;268(3 Pt 1):C708–C712. doi: 10.1152/ajpcell.1995.268.3.C708. [DOI] [PubMed] [Google Scholar]
- McNicholas C. M., Guggino W. B., Schwiebert E. M., Hebert S. C., Giebisch G., Egan M. E. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8083–8088. doi: 10.1073/pnas.93.15.8083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morales M. M., Carroll T. P., Morita T., Schwiebert E. M., Devuyst O., Wilson P. D., Lopes A. G., Stanton B. A., Dietz H. C., Cutting G. R. Both the wild type and a functional isoform of CFTR are expressed in kidney. Am J Physiol. 1996 Jun;270(6 Pt 2):F1038–F1048. doi: 10.1152/ajprenal.1996.270.6.F1038. [DOI] [PubMed] [Google Scholar]
- Parent L., Cardinal J., Sauvé R. Single-channel analysis of a K channel at basolateral membrane of rabbit proximal convoluted tubule. Am J Physiol. 1988 Jan;254(1 Pt 2):F105–F113. doi: 10.1152/ajprenal.1988.254.1.F105. [DOI] [PubMed] [Google Scholar]
- Paulais M., Teulon J. cAMP-activated chloride channel in the basolateral membrane of the thick ascending limb of the mouse kidney. J Membr Biol. 1990 Feb;113(3):253–260. doi: 10.1007/BF01870076. [DOI] [PubMed] [Google Scholar]
- Sheppard D. N., Robinson K. A. Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a murine cell line. J Physiol. 1997 Sep 1;503(Pt 2):333–346. doi: 10.1111/j.1469-7793.1997.333bh.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherry A. M., Cuppoletti J., Malinowska D. H. Differential acidic pH sensitivity of delta F508 CFTR Cl- channel activity in lipid bilayers. Am J Physiol. 1994 Mar;266(3 Pt 1):C870–C875. doi: 10.1152/ajpcell.1994.266.3.C870. [DOI] [PubMed] [Google Scholar]
- Simon D. B., Bindra R. S., Mansfield T. A., Nelson-Williams C., Mendonca E., Stone R., Schurman S., Nayir A., Alpay H., Bakkaloglu A. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet. 1997 Oct;17(2):171–178. doi: 10.1038/ng1097-171. [DOI] [PubMed] [Google Scholar]
- Snouwaert J. N., Brigman K. K., Latour A. M., Malouf N. N., Boucher R. C., Smithies O., Koller B. H. An animal model for cystic fibrosis made by gene targeting. Science. 1992 Aug 21;257(5073):1083–1088. doi: 10.1126/science.257.5073.1083. [DOI] [PubMed] [Google Scholar]
- Stanton B. A. Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function. Wien Klin Wochenschr. 1997 Jun 27;109(12-13):457–464. [PubMed] [Google Scholar]
- Tabcharani J. A., Linsdell P., Hanrahan J. W. Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels. J Gen Physiol. 1997 Oct;110(4):341–354. doi: 10.1085/jgp.110.4.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winters C. J., Reeves W. B., Andreoli T. E. Cl- channels in basolateral renal medullary membranes: III. Determinants of single-channel activity. J Membr Biol. 1990 Dec;118(3):269–278. doi: 10.1007/BF01868611. [DOI] [PubMed] [Google Scholar]
- van Kuijck M. A., van Aubel R. A., Busch A. E., Lang F., Russel F. G., Bindels R. J., van Os C. H., Deen P. M. Molecular cloning and expression of a cyclic AMP-activated chloride conductance regulator: a novel ATP-binding cassette transporter. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5401–5406. doi: 10.1073/pnas.93.11.5401. [DOI] [PMC free article] [PubMed] [Google Scholar]