Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Mar 15;88(6):2361–2365. doi: 10.1073/pnas.88.6.2361

Norepinephrine and isoproterenol increase the phosphorylation of synapsin I and synapsin II in dentate slices of young but not aged Fisher 344 rats.

K D Parfitt 1, B J Hoffer 1, M D Browning 1
PMCID: PMC51231  PMID: 1900942

Abstract

A number of recent reports have suggested that norepinephrine (NE) produces a form of synaptic enhancement that resembles long-term potentiation (LTP). LTP, thought to be an electrophysiological correlate of memory, in part involves an augmentation of transmitter release. Although the effects of NE have not been unequivocally linked to LTP, it is clear that NE can produce increased transmitter release in the dentate gyrus of the hippocampus. The purpose of this study was to determine whether NE was capable of enhancing the phosphorylation of synapsin I and synapsin II, two homologous phosphoproteins thought to be involved in modulation of neurotransmitter release. NE (10 microM) and isoproterenol (250 nM) produced an increase in the phosphorylation of synapsin I and synapsin II in dentate slices from young rats. Phosphorylation site analysis of synapsin I, performed by limited proteolysis, indicated that NE and isoproterenol increased the phosphorylation of synapsin I at sites modified by Ca2+/calmodulin-dependent protein kinase II as well as cAMP-dependent protein kinase. These data demonstrate that NE stimulates the phosphorylation of synapsin I at its Ca2+/calmodulin-dependent protein kinase II site, which is a site that has been shown to regulate the effect of synapsin I on neurotransmitter release. We have also examined the effects of NE and isoproterenol on synapsin phosphorylation in dentate slices prepared from aged animals. Such animals have previously been shown to exhibit deficits in NE sensitivity as well as significant impairment in their ability to exhibit LTP. Neither NE nor isoproterenol stimulated synapsin phosphorylation in slices prepared from aged animals. Interestingly, the basal level of phosphorylation of the synapsin proteins was higher in slices prepared from aged animals. This higher basal level of phosphorylation may underlie the failure of aged animals to exhibit NE-stimulated increases in phosphorylation of the synapsin proteins. We hypothesize that the beta-adrenergic agonist-stimulated phosphorylation of synapsin I and synapsin II in young rats plays a role in the increase in transmitter release produced by NE in the dentate. Thus, the failure of the aged rats to show such phosphorylation may underlie, in part, their failure to exhibit normal responsiveness to NE. Moreover, these deficits in synapsin phosphorylation may also play some role in the deficits in plasticity seen in aged rats.

Full text

PDF
2362

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Browning M. D., Huang C. K., Greengard P. Similarities between protein IIIa and protein IIIb, two prominent synaptic vesicle-associated phosphoproteins. J Neurosci. 1987 Mar;7(3):847–853. doi: 10.1523/JNEUROSCI.07-03-00847.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Browning M. D., Huganir R., Greengard P. Protein phosphorylation and neuronal function. J Neurochem. 1985 Jul;45(1):11–23. doi: 10.1111/j.1471-4159.1985.tb05468.x. [DOI] [PubMed] [Google Scholar]
  4. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  5. De Graan P. N., Dekker L. V., Oestreicher A. B., Van der Voorn L., Gispen W. H. Determination of changes in the phosphorylation state of the neuron-specific protein kinase C substrate B-50 (GAP43) by quantitative immunoprecipitation. J Neurochem. 1989 Jan;52(1):17–23. doi: 10.1111/j.1471-4159.1989.tb10892.x. [DOI] [PubMed] [Google Scholar]
  6. Dolphin A. C., Greengard P. Serotonin stimulates phosphorylation of protein I in the facial motor nucleus of rat brain. Nature. 1981 Jan 1;289(5793):76–79. doi: 10.1038/289076a0. [DOI] [PubMed] [Google Scholar]
  7. Forn J., Greengard P. Depolarizing agents and cyclic nucleotides regulate the phosphorylation of specific neuronal proteins in rat cerebral cortex slices. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5195–5199. doi: 10.1073/pnas.75.10.5195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Geinisman Y., de Toledo-Morrell L., Morrell F. Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats. Proc Natl Acad Sci U S A. 1986 May;83(9):3027–3031. doi: 10.1073/pnas.83.9.3027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greene E., Naranjo J. N. Degeneration of hippocampal fibers and spatial memory deficit in the aged rat. Neurobiol Aging. 1987 Jan-Feb;8(1):35–43. doi: 10.1016/0197-4580(87)90055-8. [DOI] [PubMed] [Google Scholar]
  10. Greengard P., Browning M. D. Studies of the physiological role of specific neuronal phosphoproteins. Adv Second Messenger Phosphoprotein Res. 1988;21:133–146. [PubMed] [Google Scholar]
  11. Haycock J. W., Greengard P., Browning M. D. Cholinergic regulation of protein III phosphorylation in bovine adrenal chromaffin cells. J Neurosci. 1988 Sep;8(9):3233–3239. doi: 10.1523/JNEUROSCI.08-09-03233.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hemmings H. C., Jr, Girault J. A., Williams K. R., LoPresti M. B., Greengard P. ARPP-21, a cyclic AMP-regulated phosphoprotein (Mr = 21,000) enriched in dopamine-innervated brain regions. Amino acid sequence of the site phosphorylated by cyclic AMP in intact cells and kinetic studies of its phosphorylation in vitro. J Biol Chem. 1989 May 5;264(13):7726–7733. [PubMed] [Google Scholar]
  13. Hopkins W. F., Johnston D. Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus. Science. 1984 Oct 19;226(4672):350–352. doi: 10.1126/science.6091272. [DOI] [PubMed] [Google Scholar]
  14. Huttner W. B., DeGennaro L. J., Greengard P. Differential phosphorylation of multiple sites in purified protein I by cyclic AMP-dependent and calcium-dependent protein kinases. J Biol Chem. 1981 Feb 10;256(3):1482–1488. [PubMed] [Google Scholar]
  15. Huttner W. B., Greengard P. Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5402–5406. doi: 10.1073/pnas.76.10.5402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lacaille J. C., Harley C. W. The action of norepinephrine in the dentate gyrus: beta-mediated facilitation of evoked potentials in vitro. Brain Res. 1985 Dec 9;358(1-2):210–220. doi: 10.1016/0006-8993(85)90965-5. [DOI] [PubMed] [Google Scholar]
  18. Landfield P. W., McGaugh J. L., Lynch G. Impaired synaptic potentiation processes in the hippocampus of aged, memory-deficient rats. Brain Res. 1978 Jul 7;150(1):85–101. doi: 10.1016/0006-8993(78)90655-8. [DOI] [PubMed] [Google Scholar]
  19. Llinás R., McGuinness T. L., Leonard C. S., Sugimori M., Greengard P. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci U S A. 1985 May;82(9):3035–3039. doi: 10.1073/pnas.82.9.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lynch M. A., Bliss T. V. Noradrenaline modulates the release of [14C]glutamate from dentate but not from CA1/CA3 slices of rat hippocampus. Neuropharmacology. 1986 May;25(5):493–498. doi: 10.1016/0028-3908(86)90173-5. [DOI] [PubMed] [Google Scholar]
  21. McGuinness T. L., Brady S. T., Gruner J. A., Sugimori M., Llinas R., Greengard P. Phosphorylation-dependent inhibition by synapsin I of organelle movement in squid axoplasm. J Neurosci. 1989 Dec;9(12):4138–4149. doi: 10.1523/JNEUROSCI.09-12-04138.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mobley P., Greengard P. Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex. Proc Natl Acad Sci U S A. 1985 Feb;82(3):945–947. doi: 10.1073/pnas.82.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nestler E. J., Greengard P. Distribution of protein I and regulation of its state of phosphorylation in the rabbit superior cervical ganglion. J Neurosci. 1982 Aug;2(8):1011–1023. doi: 10.1523/JNEUROSCI.02-08-01011.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nestler E. J., Greengard P. Dopamine and depolarizing agents regulate the state of phosphorylation of protein I in the mammalian superior cervical sympathetic ganglion. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7479–7483. doi: 10.1073/pnas.77.12.7479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nestler E. J., Greengard P. Nerve impulses increase the phosphorylation state of protein I in rabbit superior cervical ganglion. Nature. 1982 Apr 1;296(5856):452–454. doi: 10.1038/296452a0. [DOI] [PubMed] [Google Scholar]
  26. Neuman R. S., Harley C. W. Long-lasting potentiation of the dentate gyrus population spike by norepinephrine. Brain Res. 1983 Aug 22;273(1):162–165. doi: 10.1016/0006-8993(83)91106-x. [DOI] [PubMed] [Google Scholar]
  27. Nichols R. A., Sihra T. S., Czernik A. J., Nairn A. C., Greengard P. Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature. 1990 Feb 15;343(6259):647–651. doi: 10.1038/343647a0. [DOI] [PubMed] [Google Scholar]
  28. Rodnight R., Trotta E. E., Perrett C. A simple and economical method for studying protein phosphorylation in vivo in the rat brain. J Neurosci Methods. 1985 Apr;13(2):87–95. doi: 10.1016/0165-0270(85)90021-4. [DOI] [PubMed] [Google Scholar]
  29. SCOVILLE W. B., MILNER B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957 Feb;20(1):11–21. doi: 10.1136/jnnp.20.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schiebler W., Jahn R., Doucet J. P., Rothlein J., Greengard P. Characterization of synapsin I binding to small synaptic vesicles. J Biol Chem. 1986 Jun 25;261(18):8383–8390. [PubMed] [Google Scholar]
  31. Squire L. R. The neuropsychology of human memory. Annu Rev Neurosci. 1982;5:241–273. doi: 10.1146/annurev.ne.05.030182.001325. [DOI] [PubMed] [Google Scholar]
  32. Stanton P. K., Sarvey J. M. Blockade of norepinephrine-induced long-lasting potentiation in the hippocampal dentate gyrus by an inhibitor of protein synthesis. Brain Res. 1985 Dec 30;361(1-2):276–283. doi: 10.1016/0006-8993(85)91299-5. [DOI] [PubMed] [Google Scholar]
  33. Stanton P. K., Sarvey J. M. Norepinephrine regulates long-term potentiation of both the population spike and dendritic EPSP in hippocampal dentate gyrus. Brain Res Bull. 1987 Jan;18(1):115–119. doi: 10.1016/0361-9230(87)90039-6. [DOI] [PubMed] [Google Scholar]
  34. Südhof T. C., Czernik A. J., Kao H. T., Takei K., Johnston P. A., Horiuchi A., Kanazir S. D., Wagner M. A., Perin M. S., De Camilli P. Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science. 1989 Sep 29;245(4925):1474–1480. doi: 10.1126/science.2506642. [DOI] [PubMed] [Google Scholar]
  35. Tsou K., Greengard P. Regulation of phosphorylation of proteins I, IIIa, and IIIb in rat neurohypophysis in vitro by electrical stimulation and by neuroactive agents. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6075–6079. doi: 10.1073/pnas.79.19.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Walaas S. I., Browning M. D., Greengard P. Synapsin Ia, synapsin Ib, protein IIIa, and protein IIIb, four related synaptic vesicle-associated phosphoproteins, share regional and cellular localization in rat brain. J Neurochem. 1988 Oct;51(4):1214–1220. doi: 10.1111/j.1471-4159.1988.tb03089.x. [DOI] [PubMed] [Google Scholar]
  37. Walaas S. I., Sedvall G., Greengard P. Dopamine-regulated phosphorylation of synaptic vesicle-associated proteins in rat neostriatum and substantia nigra. Neuroscience. 1989;29(1):9–19. doi: 10.1016/0306-4522(89)90328-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES