Abstract
Neuropeptides containing the carboxylterminal sequence Arg-Phe-NH2 are found throughout the animal kingdom and are important substances mediating neuronal communication. Here, we have cloned the cDNA coding for the precursor protein of the sea anemone neuropeptide (Antho-RFamide) less than Glu-Gly-Arg-Phe-NH2. This precursor is 334 amino acids in length and contains 19 copies of unprocessed Antho-RFamide (Gln-Gly-Arg-Phe-Gly), which are tandemly arranged in the C-terminal part of the protein. Paired basic residues (Lys-Arg) or single basic residues (Arg) occur at the C-terminal side of each Antho-RFamide sequence. These are likely signals for posttranslational cleavage. The processing signals at the N-terminal side of each Antho-RFamide sequence, however, include acidic residues. Processing at these amino acids must involve either an amino- or an endopeptidase that cleaves C-terminally of aspartic acid or glutamic acid residues. Such processing is, to our knowledge, hitherto unknown for peptidergic neurons. The Antho-RFamide precursor also contains two copies of the putative Antho-RFamide-related peptide Phe-Gln-Gly-Arg-Phe-NH2 and one copy of Tyr-Val-Pro-Gly-Arg-Tyr-NH2. In addition, the precursor protein harbors four other putative neuropeptides that are much less related to Antho-RFamide. This report shows that the biosynthetic machinery for neuropeptides in coelenterates, the lowest animal group having a nervous system, is already very efficient and similar to that of higher invertebrates, such as mollusks and insects, and vertebrates.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. M., Frampton J., Goelet P., Karn J. Sensitive detection of RNA using strand-specific M13 probes. Gene. 1982 Dec;20(2):139–144. doi: 10.1016/0378-1119(82)90032-4. [DOI] [PubMed] [Google Scholar]
- Chandler P. M., Rimkus D., Davidson N. Gel electrophoretic fractionation of RNAs by partial denaturation with methylmercuric hydroxide. Anal Biochem. 1979 Oct 15;99(1):200–206. doi: 10.1016/0003-2697(79)90063-0. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Fischer W. H., Spiess J. Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3628–3632. doi: 10.1073/pnas.84.11.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher J. M., Sossin W., Newcomb R., Scheller R. H. Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell. 1988 Sep 9;54(6):813–822. doi: 10.1016/s0092-8674(88)91131-2. [DOI] [PubMed] [Google Scholar]
- Graff D., Grimmelikhuijzen C. J. Isolation of less than Glu-Gly-Leu-Arg-Trp-NH2 (Antho-RWamide II), a novel neuropeptide from sea anemones. FEBS Lett. 1988 Oct 24;239(1):137–140. doi: 10.1016/0014-5793(88)80560-x. [DOI] [PubMed] [Google Scholar]
- Graff D., Grimmelikhuijzen C. J. Isolation of less than Glu-Ser-Leu-Arg-Trp-NH2, a novel neuropeptide from sea anemones. Brain Res. 1988 Mar 1;442(2):354–358. doi: 10.1016/0006-8993(88)91525-9. [DOI] [PubMed] [Google Scholar]
- Grimmelikhuijzen C. J., Graff D. Isolation of pyroGlu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9817–9821. doi: 10.1073/pnas.83.24.9817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimmelikhuijzen C. J., Graff D., McFarlane I. D. Neurones and neuropeptides in coelenterates. Arch Histol Cytol. 1989;52 (Suppl):265–278. doi: 10.1679/aohc.52.suppl_265. [DOI] [PubMed] [Google Scholar]
- Grimmelikhuijzen C. J., Hahn M., Rinehart K. L., Spencer A. N. Isolation of pyroGlu-Leu-Leu-Gly-Gly-Arg-Phe-NH2 (Pol-RFamide), a novel neuropeptide from hydromedusae. Brain Res. 1988 Dec 13;475(1):198–203. doi: 10.1016/0006-8993(88)90219-3. [DOI] [PubMed] [Google Scholar]
- Grimmelikhuijzen C. J., Rinehart K. L., Jacob E., Graff D., Reinscheid R. K., Nothacker H. P., Staley A. L. Isolation of L-3-phenyllactyl-Leu-Arg-Asn-NH2 (Antho-RNamide), a sea anemone neuropeptide containing an unusual amino-terminal blocking group. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5410–5414. doi: 10.1073/pnas.87.14.5410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hook V. Y., Loh Y. P. Carboxypeptidase B-like converting enzyme activity in secretory granules of rat pituitary. Proc Natl Acad Sci U S A. 1984 May;81(9):2776–2780. doi: 10.1073/pnas.81.9.2776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu N., Messing J. The making of strand-specific M13 probes. Gene. 1982 Mar;17(3):271–277. doi: 10.1016/0378-1119(82)90143-3. [DOI] [PubMed] [Google Scholar]
- Katopodis A. G., Ping D., May S. W. A novel enzyme from bovine neurointermediate pituitary catalyzes dealkylation of alpha-hydroxyglycine derivatives, thereby functioning sequentially with peptidylglycine alpha-amidating monooxygenase in peptide amidation. Biochemistry. 1990 Jul 3;29(26):6115–6120. doi: 10.1021/bi00478a001. [DOI] [PubMed] [Google Scholar]
- Linacre A., Kellett E., Saunders S., Bright K., Benjamin P. R., Burke J. F. Cardioactive neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) and novel related peptides are encoded in multiple copies by a single gene in the snail Lymnaea stagnalis. J Neurosci. 1990 Feb;10(2):412–419. doi: 10.1523/JNEUROSCI.10-02-00412.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nambu J. R., Murphy-Erdosh C., Andrews P. C., Feistner G. J., Scheller R. H. Isolation and characterization of a Drosophila neuropeptide gene. Neuron. 1988 Mar;1(1):55–61. doi: 10.1016/0896-6273(88)90209-7. [DOI] [PubMed] [Google Scholar]
- Newcomb R., Fisher J. M., Scheller R. H. Processing of the egg-laying hormone (ELH) precursor in the bag cell neurons of Aplysia. J Biol Chem. 1988 Sep 5;263(25):12514–12521. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider L. E., Taghert P. H. Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRFamide). Proc Natl Acad Sci U S A. 1988 Mar;85(6):1993–1997. doi: 10.1073/pnas.85.6.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taussig R., Scheller R. H. The Aplysia FMRFamide gene encodes sequences related to mammalian brain peptides. DNA. 1986 Dec;5(6):453–461. doi: 10.1089/dna.1.1986.5.453. [DOI] [PubMed] [Google Scholar]
- Wood W. I., Gitschier J., Lasky L. A., Lawn R. M. Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1585–1588. doi: 10.1073/pnas.82.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young R. A., Davis R. W. Yeast RNA polymerase II genes: isolation with antibody probes. Science. 1983 Nov 18;222(4625):778–782. doi: 10.1126/science.6356359. [DOI] [PubMed] [Google Scholar]