Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1977 Sep;23(3):608–615. doi: 10.1128/jvi.23.3.608-615.1977

Transcriptional complexity of vaccinia virus in vivo and in vitro.

E Paoletti, L J Grady
PMCID: PMC515872  PMID: 894791

Abstract

The transcriptional complexity of vaccinia virus both in vivo and in vitro has been measured by using DNA:RNA hybridization with RNA in excess. In vivo, "early" or prereplicative RNA was found to saturate at 25% or one-half of the viral genome. "Late" or postreplicative RNA from infected HeLa cells saturated at 52% or essentially the entire genome. This well-regulated transcriptional pattern of the virus in vivo was not maintained in vitro. In a number of experiments a range of saturation values from 40 to 50% was obtained for in vitro synthesized RNA. The complexity of polyadenylated and non-polyadenylated RNA, as well as total purified 8 to 12S RNA released from the virus, was indistinguishable from purified high-molecular-weight virion-associated RNA with a sedimentation value of greater than 20S and equivalent to total in vitro synthesized RNA. No additional hybrid formation was observed in experiments in which total in vitro RNA and late in vivo RNA from infected HeLa cells were combined, suggesting that the virus does not transcribe in vitro DNA sequences that are not also transcribed during productive infection. Approximately 15% complementary RNA was detected when radiolabeled total in vitro RNA was allowed to reanneal with late in vivo RNA, while as much as 8% of the in vitro synthesized RNA was found to be complementary.

Full text

PDF
610

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adesnik M., Salditt M., Thomas W., Darnell J. E. Evidence that all messenger RNA molecules (except histone messenger RNA) contain Poly (A) sequences and that the Poly(A) has a nuclear function. J Mol Biol. 1972 Oct 28;71(1):21–30. doi: 10.1016/0022-2836(72)90397-x. [DOI] [PubMed] [Google Scholar]
  2. Bachenheimer S., Darnell J. E. Adenovirus-2 mRNA is transcribed as part of a high-molecular-weight precursor RNA. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4445–4449. doi: 10.1073/pnas.72.11.4445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baltimore D., Girard M. An intermediate in the synthesis of poliovirus RNA. Proc Natl Acad Sci U S A. 1966 Aug;56(2):741–748. doi: 10.1073/pnas.56.2.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berns K. I., Silverman C. Natural occurrence of cross-linked vaccinia virus deoxyribonucleic acid. J Virol. 1970 Mar;5(3):299–304. doi: 10.1128/jvi.5.3.299-304.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brawerman G. Eukaryotic messenger RNA. Annu Rev Biochem. 1974;43(0):621–642. doi: 10.1146/annurev.bi.43.070174.003201. [DOI] [PubMed] [Google Scholar]
  6. Chan L., Harris S. E., Rosen J. M., Means A. R., O'Malley B. W. Processing of nuclear heterogeneous RNA: recent developments. Life Sci. 1977 Jan 1;20(1):1–15. doi: 10.1016/0024-3205(77)90123-0. [DOI] [PubMed] [Google Scholar]
  7. Colby C., Duesberg P. H. Double-stranded RNA in vaccinia virus infected cells. Nature. 1969 Jun 7;222(5197):940–944. doi: 10.1038/222940a0. [DOI] [PubMed] [Google Scholar]
  8. Colby C., Jurale C., Kates J. R. Mechanism of synthesis of vaccinia virus double-stranded ribonucleic acid in vivo and in vitro. J Virol. 1971 Jan;7(1):71–76. doi: 10.1128/jvi.7.1.71-76.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Craig E. A., Raskas H. J. Nuclear transcripts larger than the cytoplasmic mRNAs are specified by segments of the adenovirus genome coding for early functions. Cell. 1976 Jun;8(2):205–213. doi: 10.1016/0092-8674(76)90004-0. [DOI] [PubMed] [Google Scholar]
  10. Darnell J. E., Jelinek W. R., Molloy G. R. Biogenesis of mRNA: genetic regulation in mammalian cells. Science. 1973 Sep 28;181(4106):1215–1221. doi: 10.1126/science.181.4106.1215. [DOI] [PubMed] [Google Scholar]
  11. Davidson E. H., Britten R. J. Organization, transcription, and regulation in the animal genome. Q Rev Biol. 1973 Dec;48(4):565–613. doi: 10.1086/407817. [DOI] [PubMed] [Google Scholar]
  12. Duesberg P. H., Colby C. On the biosynthesis and structure of double-stranded RNA in vaccinia virus-infected cells. Proc Natl Acad Sci U S A. 1969 Sep;64(1):396–403. doi: 10.1073/pnas.64.1.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gangemi J. D., Sharp D. G. Use of a restriction endonuclease in analyzing the genomes from two different strains of vaccinia virus. J Virol. 1976 Oct;20(1):319–323. doi: 10.1128/jvi.20.1.319-323.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Georgieff M., Bachenheimer S., Darnell J. E. An examination of the nuclear RNA of adenovirus-transformed cells. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 1):475–482. doi: 10.1101/sqb.1974.039.01.059. [DOI] [PubMed] [Google Scholar]
  15. Geshelin P., Berns K. I. Characterization and localization of the naturally occurring cross-links in vaccinia virus DNA. J Mol Biol. 1974 Oct 5;88(4):785–796. doi: 10.1016/0022-2836(74)90399-4. [DOI] [PubMed] [Google Scholar]
  16. Grady L. J., Campbell W. P. Transcription of the repetitive DNA sequences in polyoma-transformed and nontransformed mouse cells in culture. Cancer Res. 1975 Jun;35(6):1559–1562. [PubMed] [Google Scholar]
  17. Grady L. J., Paoletti E. Molecular complexity of vaccinia DNA and the presence of reiterated sequences in the genome. Virology. 1977 Jun 15;79(2):337–341. doi: 10.1016/0042-6822(77)90361-0. [DOI] [PubMed] [Google Scholar]
  18. Haas M., Vogt M., Dulbecco R. Loss of simian virus 40 DNA-RNA hybrids from nitrocellulose membranes; implications for the study of virus--host DNA interactions. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2160–2164. doi: 10.1073/pnas.69.8.2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kates J. R., McAuslan B. R. Poxvirus DNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1967 Jul;58(1):134–141. doi: 10.1073/pnas.58.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kates J., Beeson J. Ribonucleic acid synthesis in vaccinia virus. I. The mechanism of synthesis and release of RNA in vaccinia cores. J Mol Biol. 1970 May 28;50(1):1–18. doi: 10.1016/0022-2836(70)90100-2. [DOI] [PubMed] [Google Scholar]
  21. Kaverin N. V., Varich N. L., Surgay V. V., Chernos V. I. A quantitative estimation of poxvirus genome fraction transcribed as "early" and "late" mRNA. Virology. 1975 May;65(1):112–119. doi: 10.1016/0042-6822(75)90011-2. [DOI] [PubMed] [Google Scholar]
  22. Lewin B. Units of transcription and translation: sequence components of heterogeneous nuclear RNA and messenger RNA. Cell. 1975 Feb;4(2):77–93. doi: 10.1016/0092-8674(75)90113-0. [DOI] [PubMed] [Google Scholar]
  23. Lewin B. Units of transcription and translation: the relationship between heterogeneous nuclear RNA and messenger RNA. Cell. 1975 Jan;4(1):11–20. doi: 10.1016/0092-8674(75)90128-2. [DOI] [PubMed] [Google Scholar]
  24. Martin M. A., Byrne J. C. Sedimentation properties of simian virus 40-specific ribonucleic acid present in green monkey cells during productive infection and in mouse cells undergoing abortive infection. J Virol. 1970 Oct;6(4):463–469. doi: 10.1128/jvi.6.4.463-469.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Munyon W., Paoletti E., Grace J. T., Jr RNA polymerase activity in purified infectious vaccinia virus. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2280–2287. doi: 10.1073/pnas.58.6.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nevins J. R., Joklik W. K. Poly (A) sequences of vaccinia virus messenger RNA: nature, mode of addition and function during translation in vitra and in vivo. Virology. 1975 Jan;63(1):1–14. doi: 10.1016/0042-6822(75)90365-7. [DOI] [PubMed] [Google Scholar]
  27. Nuss D. L., Paoletti E. Methyl group analysis of virion-associated high-molecular-weight RNA synthesized in vitro by purified vaccinia virus. J Virol. 1977 Jul;23(1):110–116. doi: 10.1128/jvi.23.1.110-116.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oda K. I., Joklik W. K. Hybridization and sedimentation studies on "early" and "late" vaccinia messenger RNA. J Mol Biol. 1967 Aug 14;27(3):395–419. doi: 10.1016/0022-2836(67)90047-2. [DOI] [PubMed] [Google Scholar]
  29. Paoletti E. High molecular weight virion-associated RNA of vaccinia. A possible precursor to 8 to 12 S mRNA. J Biol Chem. 1977 Feb 10;252(3):872–877. [PubMed] [Google Scholar]
  30. Paoletti E. In vitro synthesis of a high molecular weight virion-associated RNA by vaccinia. J Biol Chem. 1977 Feb 10;252(3):866–871. [PubMed] [Google Scholar]
  31. Parsons J. T., Gardner J., Green M. Biochemical studies on adenovirus multiplication, XIX. Resolution of late viral RNA species in the nucleus and cytoplasm. Proc Natl Acad Sci U S A. 1971 Mar;68(3):557–560. doi: 10.1073/pnas.68.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Perry R. P. Processing of RNA. Annu Rev Biochem. 1976;45:605–629. doi: 10.1146/annurev.bi.45.070176.003133. [DOI] [PubMed] [Google Scholar]
  33. Philipson L., Pettersson U., Lindberg U., Tibbetts C., Vennström B., Persson T. RNA synthesis and processing in adenovirus-infected cells. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 1):447–456. doi: 10.1101/sqb.1974.039.01.057. [DOI] [PubMed] [Google Scholar]
  34. Wagner E. K., Roizman B. RNA synthesis in cells infected with herpes simplex virus. II. Evidence that a class of viral mRNA is derived from a high molecular weight precursor synthesized in the nucleus. Proc Natl Acad Sci U S A. 1969 Oct;64(2):626–633. doi: 10.1073/pnas.64.2.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wall R., Philipson L., Darnell J. E. Processing of adenovirus specific nuclear RNA during virus replication. Virology. 1972 Oct;50(1):27–34. doi: 10.1016/0042-6822(72)90342-x. [DOI] [PubMed] [Google Scholar]
  36. Wall R., Weber J., Gage Z., Darnell J. E. Production of viral mRNA in adenovirus- transformed cells by the post- transcriptional processing of heterogeneous nuclear RNA containing viral and cell sequences. J Virol. 1973 Jun;11(6):953–960. doi: 10.1128/jvi.11.6.953-960.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weinberg R. A. Nuclear RNA metabolism. Annu Rev Biochem. 1973;42:329–354. doi: 10.1146/annurev.bi.42.070173.001553. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES