Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1977 Oct;24(1):177–193. doi: 10.1128/jvi.24.1.177-193.1977

Role of the T5 gene D15 nuclease in the generation of nicked bacteriophage T5 DNA.

R W Moyer, C T Rothe
PMCID: PMC515921  PMID: 904023

Abstract

The processing of newly replicated concatameric T5 DNA into both single stranded DNA changed of unit length and single-stranded fragments of sizes comparable to those found in mature T5 virion DNA occurs in the absence of late T5 protein synthesis. The formation of unit-length, single-stranded DNA chains does not require the early T5 gene D15 nuclease: however, the subsequent formation of the single-stranded fragments does require that the D15 nuclease be functional. A reexamination of the properties of the purified D15 nuclease under a variety of conditions showed that, in addition to functioning as a 5' leads to 3' exonuclease, the enzyme can also introduce endonucleolytic scissions into mature T5 DNA in a reaction that requires duplex T5 DNA and preexisting, single-stranded interruptions.

Full text

PDF
179

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bujard H., Hendrickson H. E. Structure and function of the genome of coliphage T5. 1. The physical structure of the chromosome of T5 + . Eur J Biochem. 1973 Mar 15;33(3):517–528. doi: 10.1111/j.1432-1033.1973.tb02711.x. [DOI] [PubMed] [Google Scholar]
  2. Carrington J. M., Lunt M. R. Studies on the replication of bacteriophage T5. J Gen Virol. 1973 Feb;18(2):91–109. doi: 10.1099/0022-1317-18-2-91. [DOI] [PubMed] [Google Scholar]
  3. Chinnadurai G., McCorquodale D. J. Regulation of expression of late genes of bacteriophage T5. J Virol. 1974 Jan;13(1):85–93. doi: 10.1128/jvi.13.1.85-93.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chinnadurai G., McCorquodale D. J. Requirement of a phage-induced 5'-exonuclease for the expression of late genes of bacteriophage T5. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3502–3505. doi: 10.1073/pnas.70.12.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  6. Frenkel G. D., Richardson C. C. The deoxyribonuclease induced after infection of Escherichia coli by bacteriophage T5. I. Characterization of the enzyme as a 5'-exonuclease. J Biol Chem. 1971 Aug 10;246(15):4839–4847. [PubMed] [Google Scholar]
  7. Frenkel G. D., Richardson C. C. The deoxyribonuclease induced after infection of Escherichia coli by bacteriophage T5. II. Role of the enzyme in replication of the pahge deoxyribonucleic acid. J Biol Chem. 1971 Aug 10;246(15):4848–4852. [PubMed] [Google Scholar]
  8. Hayward G. S., Smith M. G. The chromosome of bacteriophage T5. I. Analysis of the single-stranded DNA fragments by agarose gel electrophoresis. J Mol Biol. 1972 Feb 14;63(3):383–395. doi: 10.1016/0022-2836(72)90435-4. [DOI] [PubMed] [Google Scholar]
  9. Hendrickson H. E., McCorquodale D. J. Genetic and physiological studies of bacteriophage T5. 3. Patterns of deoxyribonucleic acid synthesis induced by mutants of T5 and the identification of genes influencing the appearance of phage-induced dihydrofolate reductase and deoxyribonuclease. J Virol. 1972 Jun;9(6):981–989. doi: 10.1128/jvi.9.6.981-989.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herman R. C., Moyer R. W. In vivo repair of bacteriophage t5 DNA: an assay for viral growth control. Virology. 1975 Aug;66(2):393–407. doi: 10.1016/0042-6822(75)90212-3. [DOI] [PubMed] [Google Scholar]
  11. Herman R. C., Moyer R. W. In vivo repair of the single-strand interruptions contained in bacteriophage T5 DNA. Proc Natl Acad Sci U S A. 1974 Mar;71(3):680–684. doi: 10.1073/pnas.71.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Moyer R. W., Fu A. S., Szabo C. Regulation of bacteriophage T5 development by ColI factors. J Virol. 1972 May;9(5):804–812. doi: 10.1128/jvi.9.5.804-812.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paul A. V., Lehman I. R. The deoxyribonucleases of Escherichia coli. VII. A deoxyribonuclease induced by infection with phage T-5. J Biol Chem. 1966 Jul 25;241(14):3441–3451. [PubMed] [Google Scholar]
  15. Rogers S. G., Rhoades M. Bacteriophage T5-induced endonucleases that introduce site-specific single-chain interruptions in duplex DNA. Proc Natl Acad Sci U S A. 1976 May;73(5):1576–1580. doi: 10.1073/pnas.73.5.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sidikaro J., Masayasu N. In vitro synthesis of the E3 immunity protein directed by Col E3 plasmid deoxyribonucleic acid. J Biol Chem. 1975 Feb 10;250(3):1123–1131. [PubMed] [Google Scholar]
  17. Sugino Y., Tomizawa J., Kakefuda T. Location of non-DNA components of closed circular colicin E1 plasmid DNA. Nature. 1975 Feb 20;253(5493):652–654. doi: 10.1038/253652a0. [DOI] [PubMed] [Google Scholar]
  18. Szabo C., Dharmgrongartama B., Moyer R. W. The regulation of transcription in bacteriophage T5-infected Escherichia coli. Biochemistry. 1975 Mar 11;14(5):989–997. doi: 10.1021/bi00676a018. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES