Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 May 15;88(10):4275–4279. doi: 10.1073/pnas.88.10.4275

A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803.

T Ogawa 1
PMCID: PMC51641  PMID: 1903537

Abstract

A clone that transforms the RKa mutant of Synechocystis PCC6803 defective in inorganic carbon (Ci) transport to the wild-type phenotype was isolated from a cyanobacterial genomic library. The clone contained an 11.8-kilobase-pair DNA insert. Sequencing of the insert DNA in the region of the mutation in RKa revealed an open reading frame (designated as ndhB), which showed extensive amino acid sequence homology to the subunit-2 genes of NADH dehydrogenase (EC 1.6.99.3) (ndhB) of chloroplasts and mitochondria. The homology was much stronger with the chloroplast genes. Sequence analysis of the ndhB gene of RKa mutant revealed a G----A substitution that results in a Gly----Asp substitution in the deduced amino acid. A defined mutant (M55), constructed by inactivating the ndhB gene in wild-type Synechocystis, required high CO2 conditions for growth and was unable to transport CO2 and HCO3- into the intracellular Ci pool. The results indicate that the ndhB gene is required for Ci transport. Dark respiration was also depressed by the inactivation of the ndhB gene. A possible role of the ndhB gene product in the energization of Ci transport is discussed.

Full text

PDF
4277

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  2. Anderson S., de Bruijn M. H., Coulson A. R., Eperon I. C., Sanger F., Young I. G. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol. 1982 Apr 25;156(4):683–717. doi: 10.1016/0022-2836(82)90137-1. [DOI] [PubMed] [Google Scholar]
  3. Chomyn A., Mariottini P., Cleeter M. W., Ragan C. I., Matsuno-Yagi A., Hatefi Y., Doolittle R. F., Attardi G. Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature. 1985 Apr 18;314(6012):592–597. doi: 10.1038/314592a0. [DOI] [PubMed] [Google Scholar]
  4. Dzelzkalns V. A., Bogorad L. Molecular analysis of a mutant defective in photosynthetic oxygen evolution and isolation of a complementing clone by a novel screening procedure. EMBO J. 1988 Feb;7(2):333–338. doi: 10.1002/j.1460-2075.1988.tb02817.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. doi: 10.1007/BF02464880. [DOI] [PubMed] [Google Scholar]
  6. Kaplan A., Zenvirth D., Marcus Y., Omata T., Ogawa T. Energization and activation of inorganic carbon uptake by light in cyanobacteria. Plant Physiol. 1987 Jun;84(2):210–213. doi: 10.1104/pp.84.2.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Marcus Y., Schwarz R., Friedberg D., Kaplan A. High CO(2) Requiring Mutant of Anacystis nidulans R(2). Plant Physiol. 1986 Oct;82(2):610–612. doi: 10.1104/pp.82.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Miller A. G., Colman B. Active transport and accumulation of bicarbonate by a unicellular cyanobacterium. J Bacteriol. 1980 Sep;143(3):1253–1259. doi: 10.1128/jb.143.3.1253-1259.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nixon P. J., Gounaris K., Coomber S. A., Hunter C. N., Dyer T. A., Barber J. psbG is not a photosystem two gene but may be an ndh gene. J Biol Chem. 1989 Aug 25;264(24):14129–14135. [PubMed] [Google Scholar]
  10. Ogawa T., Kaneda T., Omata T. A Mutant of Synechococcus PCC7942 Incapable of Adapting to Low CO(2) Concentration. Plant Physiol. 1987 Jul;84(3):711–715. doi: 10.1104/pp.84.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ogawa T. Mutants of Synechocystis PCC6803 Defective in Inorganic Carbon Transport. Plant Physiol. 1990 Oct;94(2):760–765. doi: 10.1104/pp.94.2.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Oka A., Sugisaki H., Takanami M. Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol. 1981 Apr 5;147(2):217–226. doi: 10.1016/0022-2836(81)90438-1. [DOI] [PubMed] [Google Scholar]
  13. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Price G. D., Badger M. R. Isolation and Characterization of High CO(2)-Requiring-Mutants of the Cyanobacterium Synechococcus PCC7942 : Two Phenotypes that Accumulate Inorganic Carbon but Are Apparently Unable to Generate CO(2) within the Carboxysome. Plant Physiol. 1989 Oct;91(2):514–525. doi: 10.1104/pp.91.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  16. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. doi: 10.1038/254034a0. [DOI] [PubMed] [Google Scholar]
  17. Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971 Jun;35(2):171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steinmüller K., Ley A. C., Steinmetz A. A., Sayre R. T., Bogorad L. Characterization of the ndhC-psbG-ORF157/159 operon of maize plastid DNA and of the cyanobacterium Synechocystis sp. PCC6803. Mol Gen Genet. 1989 Mar;216(1):60–69. doi: 10.1007/BF00332231. [DOI] [PubMed] [Google Scholar]
  20. Volokita M., Zenvirth D., Kaplan A., Reinhold L. Nature of the Inorganic Carbon Species Actively Taken Up by the Cyanobacterium Anabaena variabilis. Plant Physiol. 1984 Nov;76(3):599–602. doi: 10.1104/pp.76.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams J. G., Szalay A. A. Stable integration of foreign DNA into the chromosome of the cyanobacterium Synechococcus R2. Gene. 1983 Sep;24(1):37–51. doi: 10.1016/0378-1119(83)90129-4. [DOI] [PubMed] [Google Scholar]
  22. Xue Y. B., Davies D. R., Thomas C. M. Sugarbeet mitochondria contain an open reading frame showing extensive sequence homology to the subunit 2 gene of the NADH: ubiquinone reductase complex. Mol Gen Genet. 1990 Apr;221(2):195–198. doi: 10.1007/BF00261720. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES