Abstract
The developmental expression and subcellular distribution of the neuron-specific 25-kDa synaptosomal protein (SNAP-25) were investigated by using Northern (RNA) blots, immunoblots, and immunocytochemistry. Both SNAP-25 protein and mRNA were present at low levels in embryonic day 15 rat brain, and levels of both increased during early postnatal maturation. Developmental immunoblots with antipeptide antisera demonstrated that a 25-kDa peptide was the major isoform in brain, and this form increased steadily from embryonic day 15 through adulthood. A second 27-kDa immunoreactive isoform was present in brain only during early development. Immunoblots of two-dimensional SDS/polyacrylamide gels revealed the presence of a predominant 25-kDa isoform of SNAP-25 in adult brain. Immunocytochemical studies indicated that as immunoreactivity for SNAP-25 increased during development, the cellular localization of SNAP-25 immunoreactivity concomitantly shifted from axons and cell bodies to presynaptic terminals. These data suggest that the SNAP-25 protein shifts in subcellular localization during development and may play a role in the establishment and stabilization of specific presynaptic terminals in brain.
Full text
PDF![5247](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8f/51849/d42a36af3158/pnas01062-0190.png)
![5248](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8f/51849/4f9c71341282/pnas01062-0191.png)
![5249](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8f/51849/3fb4ba669af9/pnas01062-0192.png)
![5250](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8f/51849/6f9baaf9fa6a/pnas01062-0193.png)
![5251](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8f/51849/f38dd8827882/pnas01062-0194.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Billingsley M. L., Polli J. W., Balaban C. D., Kincaid R. L. Developmental expression of calmodulin-dependent cyclic nucleotide phosphodiesterase in rat brain. Brain Res Dev Brain Res. 1990 May 1;53(2):253–263. doi: 10.1016/0165-3806(90)90015-q. [DOI] [PubMed] [Google Scholar]
- Bixby J. L., Reichardt L. F. The expression and localization of synaptic vesicle antigens at neuromuscular junctions in vitro. J Neurosci. 1985 Nov;5(11):3070–3080. doi: 10.1523/JNEUROSCI.05-11-03070.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Branks P. L., Wilson M. C. Patterns of gene expression in the murine brain revealed by in situ hybridization of brain-specific mRNAs. Brain Res. 1986 Jul;387(1):1–16. doi: 10.1016/0169-328x(86)90015-x. [DOI] [PubMed] [Google Scholar]
- Catsicas S., Larhammar D., Blomqvist A., Sanna P. P., Milner R. J., Wilson M. C. Expression of a conserved cell-type-specific protein in nerve terminals coincides with synaptogenesis. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):785–789. doi: 10.1073/pnas.88.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- De Camilli P., Cameron R., Greengard P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol. 1983 May;96(5):1337–1354. doi: 10.1083/jcb.96.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Geddes J. W., Hess E. J., Hart R. A., Kesslak J. P., Cotman C. W., Wilson M. C. Lesions of hippocampal circuitry define synaptosomal-associated protein-25 (SNAP-25) as a novel presynaptic marker. Neuroscience. 1990;38(2):515–525. doi: 10.1016/0306-4522(90)90047-8. [DOI] [PubMed] [Google Scholar]
- Haas C. A., DeGennaro L. J. Multiple synapsin I messenger RNAs are differentially regulated during neuronal development. J Cell Biol. 1988 Jan;106(1):195–203. doi: 10.1083/jcb.106.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jahn R., Schiebler W., Ouimet C., Greengard P. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4137–4141. doi: 10.1073/pnas.82.12.4137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly P. T., Cotman C. W. Developmental changes in morphology and molecular composition of isolated synaptic junctional structures. Brain Res. 1981 Feb 16;206(2):251–257. doi: 10.1016/0006-8993(81)90531-x. [DOI] [PubMed] [Google Scholar]
- Kelly R. B. The cell biology of the nerve terminal. Neuron. 1988 Aug;1(6):431–438. doi: 10.1016/0896-6273(88)90174-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knaus P., Betz H., Rehm H. Expression of synaptophysin during postnatal development of the mouse brain. J Neurochem. 1986 Oct;47(4):1302–1304. doi: 10.1111/j.1471-4159.1986.tb00754.x. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Oyler G. A., Higgins G. A., Hart R. A., Battenberg E., Billingsley M., Bloom F. E., Wilson M. C. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol. 1989 Dec;109(6 Pt 1):3039–3052. doi: 10.1083/jcb.109.6.3039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polli J. W., Patanow C. M., Billingsley M. L. Developmental expression of neuronal calmodulin-binding proteins in rat brain. Brain Res Dev Brain Res. 1990 Apr 1;53(1):62–70. doi: 10.1016/0165-3806(90)90124-h. [DOI] [PubMed] [Google Scholar]
- Schulman H. The multifunctional Ca2+/calmodulin-dependent protein kinase. Adv Second Messenger Phosphoprotein Res. 1988;22:39–112. [PubMed] [Google Scholar]
- Südhof T. C., Baumert M., Perin M. S., Jahn R. A synaptic vesicle membrane protein is conserved from mammals to Drosophila. Neuron. 1989 May;2(5):1475–1481. doi: 10.1016/0896-6273(89)90193-1. [DOI] [PubMed] [Google Scholar]
- Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]