Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Sep 1;88(17):7580–7584. doi: 10.1073/pnas.88.17.7580

Transformed mammalian cells are deficient in kinase-mediated control of progression through the G1 phase of the cell cycle.

H A Crissman 1, D M Gadbois 1, R A Tobey 1, E M Bradbury 1
PMCID: PMC52345  PMID: 1652754

Abstract

To investigate the role of kinase-mediated mechanisms in regulating mammalian cell proliferation, we determined the effects of the general protein kinase inhibitor staurosporine on the proliferation of a series of nontransformed and transformed cultured rodent and human cells. Levels of staurosporine as low as 1 ng/ml prevented nontransformed cells from entering S phase (i.e., induced G1 arrest), indicating that kinase-mediated processes are essential for commitment to DNA replication in normal cells. At higher concentrations of staurosporine (50-75 ng/ml), nontransformed mammalian cells were arrested in both G1 and G2. The period of sensitivity of nontransformed human diploid fibroblasts to low levels of the drug commenced 3 hr later than the G0/G1 boundary and extended through the G1/S boundary. Interference with activity of the G1-essential kinase(s) caused nontransformed human cells traversing mid-to-late G1 at the time of staurosporine addition to be "set back" to the initial staurosporine block point, suggesting the existence of a kinase-dependent "G1 clock" mechanism that must function continuously throughout the early cycle in normal cells. The initial staurosporine block point at 3 hr into G1 corresponds to neither the serum nor the amino acid restriction point. In marked contrast to the behavior of nontransformed cells, neither low nor high concentrations of staurosporine affected G1 progression in transformed cultures; high drug concentrations caused transformed cells to be arrested solely in G2. These results indicate that kinase-mediated regulation of DNA replication is lost as the result of neoplastic transformation, but the G2-arrest mechanism remains intact.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Yoshida M., Usui T., Horinouchi S., Beppu T. Highly synchronous culture of fibroblasts from G2 block caused by staurosporine, a potent inhibitor of protein kinases. Exp Cell Res. 1991 Jan;192(1):122–127. doi: 10.1016/0014-4827(91)90166-r. [DOI] [PubMed] [Google Scholar]
  2. Bartholdi M. F., Ray F. A., Cram L. S., Kraemer P. M. Karyotype instability of Chinese hamster cells during in vivo tumor progression. Somat Cell Mol Genet. 1987 Jan;13(1):1–10. doi: 10.1007/BF02422294. [DOI] [PubMed] [Google Scholar]
  3. Blow J. J., Nurse P. A cdc2-like protein is involved in the initiation of DNA replication in Xenopus egg extracts. Cell. 1990 Sep 7;62(5):855–862. doi: 10.1016/0092-8674(90)90261-c. [DOI] [PubMed] [Google Scholar]
  4. Bradbury E. M., Inglis R. J., Matthews H. R. Control of cell division by very lysine rich histone (F1) phosphorylation. Nature. 1974 Feb 1;247(5439):257–261. doi: 10.1038/247257a0. [DOI] [PubMed] [Google Scholar]
  5. Bradbury E. M., Inglis R. J., Matthews H. R., Langan T. A. Molecular basis of control of mitotic cell division in eukaryotes. Nature. 1974 Jun 7;249(457):553–556. doi: 10.1038/249553a0. [DOI] [PubMed] [Google Scholar]
  6. Collins S. J., Gallo R. C., Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977 Nov 24;270(5635):347–349. doi: 10.1038/270347a0. [DOI] [PubMed] [Google Scholar]
  7. Cooper J. A., Whyte P. RB and the cell cycle: entrance or exit? Cell. 1989 Sep 22;58(6):1009–1011. doi: 10.1016/0092-8674(89)90495-9. [DOI] [PubMed] [Google Scholar]
  8. Cooper J. L., Wharton W. Late G1 amino acid restriction point in human dermal fibroblasts. J Cell Physiol. 1985 Sep;124(3):433–438. doi: 10.1002/jcp.1041240311. [DOI] [PubMed] [Google Scholar]
  9. Crissman H. A., Steinkamp J. A. A new method for rapid and sensitive detection of bromodeoxyuridine in DNA-replicating cells. Exp Cell Res. 1987 Nov;173(1):256–261. doi: 10.1016/0014-4827(87)90350-8. [DOI] [PubMed] [Google Scholar]
  10. DeCaprio J. A., Ludlow J. W., Figge J., Shew J. Y., Huang C. M., Lee W. H., Marsilio E., Paucha E., Livingston D. M. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988 Jul 15;54(2):275–283. doi: 10.1016/0092-8674(88)90559-4. [DOI] [PubMed] [Google Scholar]
  11. Dyson N., Howley P. M., Münger K., Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989 Feb 17;243(4893):934–937. doi: 10.1126/science.2537532. [DOI] [PubMed] [Google Scholar]
  12. Freeman R. S., Donoghue D. J. Protein kinases and protooncogenes: biochemical regulators of the eukaryotic cell cycle. Biochemistry. 1991 Mar 5;30(9):2293–2302. doi: 10.1021/bi00223a001. [DOI] [PubMed] [Google Scholar]
  13. Gurley L. R., D'Anna J. A., Barham S. S., Deaven L. L., Tobey R. A. Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur J Biochem. 1978 Mar;84(1):1–15. doi: 10.1111/j.1432-1033.1978.tb12135.x. [DOI] [PubMed] [Google Scholar]
  14. Gurley L. R., Walters R. A., Tobey R. A. Sequential phsophorylation of histone subfractions in the Chinese hamster cell cycle. J Biol Chem. 1975 May 25;250(10):3936–3944. [PubMed] [Google Scholar]
  15. Kimura G., Itagaki A., Summers J. Rat cell line 3y1 and its virogenic polyoma- and sv40- transformed derivatives. Int J Cancer. 1975 Apr 15;15(4):694–706. doi: 10.1002/ijc.2910150419. [DOI] [PubMed] [Google Scholar]
  16. Kiyoto I., Yamamoto S., Aizu E., Kato R. Staurosporine, a potent protein kinase C inhibitor, fails to inhibit 12-O-tetradecanoylphorbol-13-acetate-caused ornithine decarboxylase induction in isolated mouse epidermal cells. Biochem Biophys Res Commun. 1987 Oct 29;148(2):740–746. doi: 10.1016/0006-291x(87)90938-7. [DOI] [PubMed] [Google Scholar]
  17. Kraemer P. M., Travis G. L., Ray F. A., Cram L. S. Spontaneous neoplastic evolution of Chinese hamster cells in culture: multistep progression of phenotype. Cancer Res. 1983 Oct;43(10):4822–4827. [PubMed] [Google Scholar]
  18. Langan T. A., Gautier J., Lohka M., Hollingsworth R., Moreno S., Nurse P., Maller J., Sclafani R. A. Mammalian growth-associated H1 histone kinase: a homolog of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Mol Cell Biol. 1989 Sep;9(9):3860–3868. doi: 10.1128/mcb.9.9.3860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee M. G., Nurse P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature. 1987 May 7;327(6117):31–35. doi: 10.1038/327031a0. [DOI] [PubMed] [Google Scholar]
  20. Levine A. J. The p53 protein and its interactions with the oncogene products of the small DNA tumor viruses. Virology. 1990 Aug;177(2):419–426. doi: 10.1016/0042-6822(90)90505-l. [DOI] [PubMed] [Google Scholar]
  21. Lin B. T., Gruenwald S., Morla A. O., Lee W. H., Wang J. Y. Retinoblastoma cancer suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase. EMBO J. 1991 Apr;10(4):857–864. doi: 10.1002/j.1460-2075.1991.tb08018.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ludlow J. W., DeCaprio J. A., Huang C. M., Lee W. H., Paucha E., Livingston D. M. SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell. 1989 Jan 13;56(1):57–65. doi: 10.1016/0092-8674(89)90983-5. [DOI] [PubMed] [Google Scholar]
  23. Mineo C., Murakami Y., Ishimi Y., Hanaoka F., Yamada M. Isolation and analysis of a mammalian temperature-sensitive mutant defective in G2 functions. Exp Cell Res. 1986 Nov;167(1):53–62. doi: 10.1016/0014-4827(86)90203-x. [DOI] [PubMed] [Google Scholar]
  24. Nurse P., Bissett Y. Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature. 1981 Aug 6;292(5823):558–560. doi: 10.1038/292558a0. [DOI] [PubMed] [Google Scholar]
  25. Nurse P. Universal control mechanism regulating onset of M-phase. Nature. 1990 Apr 5;344(6266):503–508. doi: 10.1038/344503a0. [DOI] [PubMed] [Google Scholar]
  26. Pardee A. B. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286–1290. doi: 10.1073/pnas.71.4.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pines J., Hunter T. p34cdc2: the S and M kinase? New Biol. 1990 May;2(5):389–401. [PubMed] [Google Scholar]
  28. Ray F. A., Peabody D. S., Cooper J. L., Cram L. S., Kraemer P. M. SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts. J Cell Biochem. 1990 Jan;42(1):13–31. doi: 10.1002/jcb.240420103. [DOI] [PubMed] [Google Scholar]
  29. Smith C. D., Glickman J. F., Chang K. J. The antiproliferative effects of staurosporine are not exclusively mediated by inhibition of protein kinase C. Biochem Biophys Res Commun. 1988 Nov 15;156(3):1250–1256. doi: 10.1016/s0006-291x(88)80767-8. [DOI] [PubMed] [Google Scholar]
  30. Stein G. H., Beeson M., Gordon L. Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science. 1990 Aug 10;249(4969):666–669. doi: 10.1126/science.2166342. [DOI] [PubMed] [Google Scholar]
  31. Tobey R. A., Oishi N., Crissman H. A. Cell cycle synchronization: reversible induction of G2 synchrony in cultured rodent and human diploid fibroblasts. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5104–5108. doi: 10.1073/pnas.87.13.5104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tobey R. A., Oishi N., Crissman H. A. Synchronized human diploid fibroblasts: progression capabilities of a subpopulation that fails to keep pace with the predominant, rapidly dividing cohort of cells. J Cell Physiol. 1989 May;139(2):432–440. doi: 10.1002/jcp.1041390228. [DOI] [PubMed] [Google Scholar]
  33. Tobey R. A., Valdez J. G., Crissman H. A. Synchronization of human diploid fibroblasts at multiple stages of the cell cycle. Exp Cell Res. 1988 Dec;179(2):400–416. doi: 10.1016/0014-4827(88)90279-0. [DOI] [PubMed] [Google Scholar]
  34. Tobey R. A., Valdez J. G., Valdez Y. E., Lehnert B. E. Proliferation of rat and human lung fibroblasts following exposure to prostaglandin E2. Exp Lung Res. 1990 May-Jun;16(3):235–255. doi: 10.3109/01902149009108842. [DOI] [PubMed] [Google Scholar]
  35. Vegesna R. V., Wu H. L., Mong S., Crooke S. T. Staurosporine inhibits protein kinase C and prevents phorbol ester-mediated leukotriene D4 receptor desensitization in RBL-1 cells. Mol Pharmacol. 1988 May;33(5):537–542. [PubMed] [Google Scholar]
  36. Wittenberg C., Sugimoto K., Reed S. I. G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell. 1990 Jul 27;62(2):225–237. doi: 10.1016/0092-8674(90)90361-h. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES