Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Nov 25;22(23):4947–4952. doi: 10.1093/nar/22.23.4947

An RNA-protein contact determined by 5-bromouridine substitution, photocrosslinking and sequencing.

M C Willis 1, K A LeCuyer 1, K M Meisenheimer 1, O C Uhlenbeck 1, T H Koch 1
PMCID: PMC523761  PMID: 7800485

Abstract

An analogue of the replicase translational operator of bacteriophage R17, that contains a 5-bromouridine at position -5 (RNA 1), complexes with a dimer of the coat protein and photocrosslinks to the coat protein in high yield upon excitation at 308 nm with a xenon chloride excimer laser. Tryptic digestion of the crosslinked nucleoprotein complex followed by Edman degradation of the tryptic fragment bearing the RNA indicates crosslinking to tyrosine 85 of the coat protein. A control experiment with a Tyr 85 to Ser 85 variant coat protein showed binding but no photocrosslinking at saturating protein concentration. This is consistent with the observation from model compound studies of preferential photocrosslinking of BrU to the electron rich aromatic amino acids tryptophan, tyrosine, and histidine with 308 nm excitation.

Full text

PDF
4947

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbier B., Charlier M., Maurizot J. C. Photochemical cross-linking of lac repressor to nonoperator 5-bromouracil-substituted DNA. Biochemistry. 1984 Jun 19;23(13):2933–2939. doi: 10.1021/bi00308a013. [DOI] [PubMed] [Google Scholar]
  2. Beckett D., Wu H. N., Uhlenbeck O. C. Roles of operator and non-operator RNA sequences in bacteriophage R17 capsid assembly. J Mol Biol. 1988 Dec 20;204(4):939–947. doi: 10.1016/0022-2836(88)90053-8. [DOI] [PubMed] [Google Scholar]
  3. Blatter E. E., Ebright Y. W., Ebright R. H. Identification of an amino acid-base contact in the GCN4-DNA complex by bromouracil-mediated photocrosslinking. Nature. 1992 Oct 15;359(6396):650–652. doi: 10.1038/359650a0. [DOI] [PubMed] [Google Scholar]
  4. Dietz T. M., Koch T. H. Photochemical coupling of 5-bromouracil to tryptophan, tyrosine and histidine, peptide-like derivatives in aqueous fluid solution. Photochem Photobiol. 1987 Dec;46(6):971–978. doi: 10.1111/j.1751-1097.1987.tb04879.x. [DOI] [PubMed] [Google Scholar]
  5. Dietz T. M., Koch T. H. Photochemical reduction of 5-bromouracil by cysteine derivatives and coupling of 5-bromouracil to cystine derivatives. Photochem Photobiol. 1989 Feb;49(2):121–129. doi: 10.1111/j.1751-1097.1989.tb04085.x. [DOI] [PubMed] [Google Scholar]
  6. Eggen K., Nathans D. Regulation of protein synthesis directed by coliphage MS2 RNA. II. In vitro repression by phage coat protein. J Mol Biol. 1969 Jan;39(2):293–305. doi: 10.1016/0022-2836(69)90318-0. [DOI] [PubMed] [Google Scholar]
  7. Gott J. M., Willis M. C., Koch T. H., Uhlenbeck O. C. A specific, UV-induced RNA-protein cross-link using 5-bromouridine-substituted RNA. Biochemistry. 1991 Jun 25;30(25):6290–6295. doi: 10.1021/bi00239a030. [DOI] [PubMed] [Google Scholar]
  8. Hicke B. J., Willis M. C., Koch T. H., Cech T. R. Telomeric protein-DNA point contacts identified by photo-cross-linking using 5-bromodeoxyuridine. Biochemistry. 1994 Mar 22;33(11):3364–3373. doi: 10.1021/bi00177a030. [DOI] [PubMed] [Google Scholar]
  9. Katouzian-Safadi M., Blazy B., Charlier M. Photochemical cross-linking of the cyclic adenosine 3',5' monophosphate receptor protein to Escherichia coli 5-bromouracil-substituted DNA. Role of the effectors. Photochem Photobiol. 1991 May;53(5):611–616. doi: 10.1111/j.1751-1097.1991.tb08487.x. [DOI] [PubMed] [Google Scholar]
  10. Katouzian-Safadi M., Laine B., Chartier F., Cremet J. Y., Belaiche D., Sautiere P., Charlier M. Determination of the DNA-interacting region of the archaebacterial chromosomal protein MC1. Photocrosslinks with 5-bromouracil-substituted DNA. Nucleic Acids Res. 1991 Sep 25;19(18):4937–4941. doi: 10.1093/nar/19.18.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Khalili K., Rappaport J., Khoury G. Nuclear factors in human brain cells bind specifically to the JCV regulatory region. EMBO J. 1988 Apr;7(4):1205–1210. doi: 10.1002/j.1460-2075.1988.tb02932.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin S. Y., Riggs A. D. Photochemical attachment of lac repressor to bromodeoxyuridine-substituted lac operator by ultraviolet radiation. Proc Natl Acad Sci U S A. 1974 Mar;71(3):947–951. doi: 10.1073/pnas.71.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ling C. M., Hung P. P., Overby L. R. Independent assembly of Qbeta and MS2 phages in doubly infected Escherichia coli. Virology. 1970 Apr;40(4):920–929. doi: 10.1016/0042-6822(70)90138-8. [DOI] [PubMed] [Google Scholar]
  14. Liu J., Sodeoka M., Lane W. S., Verdine G. L. Evidence for a non-alpha-helical DNA-binding motif in the Rel homology region. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):908–912. doi: 10.1073/pnas.91.3.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ogata R., Gilbert W. Contacts between the lac repressor and the thymines in the lac operator. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4973–4976. doi: 10.1073/pnas.74.11.4973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Romaniuk P. J., Lowary P., Wu H. N., Stormo G., Uhlenbeck O. C. RNA binding site of R17 coat protein. Biochemistry. 1987 Mar 24;26(6):1563–1568. doi: 10.1021/bi00380a011. [DOI] [PubMed] [Google Scholar]
  18. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  19. Tanner N. K., Hanna M. M., Abelson J. Binding interactions between yeast tRNA ligase and a precursor transfer ribonucleic acid containing two photoreactive uridine analogues. Biochemistry. 1988 Nov 29;27(24):8852–8861. doi: 10.1021/bi00424a025. [DOI] [PubMed] [Google Scholar]
  20. Valegård K., Liljas L., Fridborg K., Unge T. The three-dimensional structure of the bacterial virus MS2. Nature. 1990 May 3;345(6270):36–41. doi: 10.1038/345036a0. [DOI] [PubMed] [Google Scholar]
  21. Weintraub H. The assembly of newly replicated DNA into chromatin. Cold Spring Harb Symp Quant Biol. 1974;38:247–256. doi: 10.1101/sqb.1974.038.01.028. [DOI] [PubMed] [Google Scholar]
  22. Witherell G. W., Gott J. M., Uhlenbeck O. C. Specific interaction between RNA phage coat proteins and RNA. Prog Nucleic Acid Res Mol Biol. 1991;40:185–220. doi: 10.1016/s0079-6603(08)60842-9. [DOI] [PubMed] [Google Scholar]
  23. Wolfes H., Fliess A., Winkler F., Pingoud A. Cross-linking of bromodeoxyuridine-substituted oligonucleotides to the EcoRI and EcoRV restriction endonucleases. Eur J Biochem. 1986 Sep 1;159(2):267–273. doi: 10.1111/j.1432-1033.1986.tb09863.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES