Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jan;87(2):618–622. doi: 10.1073/pnas.87.2.618

Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase.

C A Batt 1, A C Jamieson 1, M A Vandeyar 1
PMCID: PMC53316  PMID: 2405386

Abstract

Two conserved histidine residues (His-101 and His-271) appear to be essential components in the active site of the enzyme xylose (glucose) isomerase (EC 5.3.1.5). These amino acid residues were targeted for mutagenesis on the basis of sequence homology among xylose isomerases isolated from Escherichia coli, Bacillus subtilis, Ampullariella sp. strain 3876, and Streptomyces violaceus-niger. Each residue was selectively replaced by site-directed mutagenesis and shown to be essential for activity. No measurable activity was observed for any mutations replacing either His-101 or His-271. Circular dichroism measurements revealed no significant change in the overall conformation of the mutant enzymes, and all formed dimers similar to the wild-type enzyme. Mutations at His-271 could be distinguished from those at His-101, since the former resulted in a thermolabile protein whereas no significant change in heat stability was observed for the latter. Based upon these results and structural data recently reported, we speculate that His-101 is the catalytic base mediating the reaction. Replacement of His-271 may render the enzyme thermolabile, since this residue appears to be a ligand for one of the metal ions in the active site of the enzyme.

Full text

PDF
622

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carrell H. L., Glusker J. P., Burger V., Manfre F., Tritsch D., Biellmann J. F. X-ray analysis of D-xylose isomerase at 1.9 A: native enzyme in complex with substrate and with a mechanism-designed inactivator. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4440–4444. doi: 10.1073/pnas.86.12.4440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carrell H. L., Rubin B. H., Hurley T. J., Glusker J. P. X-ray crystal structure of D-xylose isomerase at 4-A resolution. J Biol Chem. 1984 Mar 10;259(5):3230–3236. [PubMed] [Google Scholar]
  3. Drocourt D., Bejar S., Calmels T., Reynes J. P., Tiraby G. Nucleotide sequence of the xylose isomerase gene from Streptomyces violaceoniger. Nucleic Acids Res. 1988 Oct 11;16(19):9337–9337. doi: 10.1093/nar/16.19.9337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dyson J. E., Noltmann E. A. The effect of pH and temperature on the kinetic parameters of phosphoglucose isomerase. Participation of histidine and lysine in a proposed dual function mechanism. J Biol Chem. 1968 Apr 10;243(7):1401–1414. [PubMed] [Google Scholar]
  5. Farber G. K., Machin P., Almo S. C., Petsko G. A., Hajdu J. X-ray Laue diffraction from crystals of xylose isomerase. Proc Natl Acad Sci U S A. 1988 Jan;85(1):112–115. doi: 10.1073/pnas.85.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farber G. K., Petsko G. A., Ringe D. The 3.0 A crystal structure of xylose isomerase from Streptomyces olivochromogenes. Protein Eng. 1987 Dec;1(6):459–466. doi: 10.1093/protein/1.6.459. [DOI] [PubMed] [Google Scholar]
  7. Gaikwad S. M., More M. W., Vartak H. G., Deshpande V. V. Evidence for the essential histidine residue at the active site of glucose/xylose isomerase from Streptomyces. Biochem Biophys Res Commun. 1988 Aug 30;155(1):270–277. doi: 10.1016/s0006-291x(88)81079-9. [DOI] [PubMed] [Google Scholar]
  8. Henrick K., Blow D. M., Carrell H. L., Glusker J. P. Comparison of backbone structures of glucose isomerase from Streptomyces and Arthrobacter. Protein Eng. 1987 Dec;1(6):467–469. doi: 10.1093/protein/1.6.467. [DOI] [PubMed] [Google Scholar]
  9. Hogue-Angeletti R. A. Subunit structure and amino acid composition of xylose isomerase from Streptomyces albus. J Biol Chem. 1975 Oct 10;250(19):7814–7818. [PubMed] [Google Scholar]
  10. Lebioda L., Stec B. Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor. Nature. 1988 Jun 16;333(6174):683–686. doi: 10.1038/333683a0. [DOI] [PubMed] [Google Scholar]
  11. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  12. Raines R. T., Sutton E. L., Straus D. R., Gilbert W., Knowles J. R. Reaction energetics of a mutant triosephosphate isomerase in which the active-site glutamate has been changed to aspartate. Biochemistry. 1986 Nov 4;25(22):7142–7154. doi: 10.1021/bi00370a057. [DOI] [PubMed] [Google Scholar]
  13. Rose I. A. Mechanism of the aldose-ketose isomerase reactions. Adv Enzymol Relat Areas Mol Biol. 1975;43:491–517. doi: 10.1002/9780470122884.ch6. [DOI] [PubMed] [Google Scholar]
  14. Saari G. C., Kumar A. A., Kawasaki G. H., Insley M. Y., O'Hara P. J. Sequence of the Ampullariella sp. strain 3876 gene coding for xylose isomerase. J Bacteriol. 1987 Feb;169(2):612–618. doi: 10.1128/jb.169.2.612-618.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schellenberg G. D., Sarthy A., Larson A. E., Backer M. P., Crabb J. W., Lidstrom M., Hall B. D., Furlong C. E. Xylose isomerase from Escherichia coli. Characterization of the protein and the structural gene. J Biol Chem. 1984 Jun 10;259(11):6826–6832. [PubMed] [Google Scholar]
  16. Vandeyar M. A., Weiner M. P., Hutton C. J., Batt C. A. A simple and rapid method for the selection of oligodeoxynucleotide-directed mutants. Gene. 1988 May 15;65(1):129–133. doi: 10.1016/0378-1119(88)90425-8. [DOI] [PubMed] [Google Scholar]
  17. Wilhelm M., Hollenberg C. P. Nucleotide sequence of the Bacillus subtilis xylose isomerase gene: extensive homology between the Bacillus and Escherichia coli enzyme. Nucleic Acids Res. 1985 Aug 12;13(15):5717–5722. doi: 10.1093/nar/13.15.5717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yamanaka K. Purification, crystallization and properties of the D-xylose isomerase from Lactobacillus brevis. Biochim Biophys Acta. 1968 Mar 25;151(3):670–680. doi: 10.1016/0005-2744(68)90015-6. [DOI] [PubMed] [Google Scholar]
  19. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 1983;100:468–500. doi: 10.1016/0076-6879(83)00074-9. [DOI] [PubMed] [Google Scholar]
  20. Zvelebil M. J., Sternberg M. J. Analysis and prediction of the location of catalytic residues in enzymes. Protein Eng. 1988 Jul;2(2):127–138. doi: 10.1093/protein/2.2.127. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES