Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Feb;87(4):1263–1267. doi: 10.1073/pnas.87.4.1263

Identification of the HeLa tumor-associated antigen, p75/150, as intestinal alkaline phosphatase and evidence for its transcriptional regulation.

K M Latham 1, E J Stanbridge 1
PMCID: PMC53454  PMID: 2304898

Abstract

Prior studies identified a cell-surface antigen, p75/150, that exclusively associated with the tumorigenic phenotype of the HeLa parent and the tumorigenic phenotype of the HeLa parent and the tumorigenic segregants of suppressed, nontumorigenic HeLa x human fibroblast cell hybrids. Candidate p75/150 cDNA clones were isolated from a D98/AH.2 (HeLa) cDNA library using oligonucleotide probes derived from p75/150 partial peptide sequence data. A data base search revealed close similarity of p75/150 with intestinal alkaline phosphatase (IAP) [Berger, J., Garantini, E., Hua, J. C. & Udenfriend, S. (1987) Proc. Natl. Acad. Sci. USA 84, 695-698]. We demonstrate that p75/150 is identical to HeLa IAP by the following criteria: (i) 47/49 amino acid identity of p75 peptide sequence with IAP, (ii) restriction maps for the p75/150 candidate cDNA clone and IAP are identical, (iii) partial DNA sequence analysis of p75/150 candidate cDNA clones revealed complete nucleotide identity with IAP, except for a single nucleotide substitution in the 5' untranslated region, (iv) transfection of a p75/150 cDNA expression vector into the nontumorigenic hybrid, CGL1, yielded p75/150 antibody-positive transfectants that also expressed partially heat-resistant alkaline phosphatase activity. Northern blot analysis demonstrated that high levels of HeLa IAP mRNA were expressed in D98/AH.2 and the tumorigenic segregant CGL4; however, no mRNA was detected in CGL1. Nuclear run-on analyses indicate that HeLa IAP mRNA expression in the HeLa x fibroblast hybrids is regulated at the level of transcription initiation. Furthermore, evidence is discussed supporting the involvement of a chromosome 11 tumor suppressor locus in the regulation of HeLa IAP gene expression.

Full text

PDF
1263

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariizumi K., Takahashi H., Nakamura M., Ariga H. Negative transcriptional regulatory element that functions in embryonal carcinoma cells. Mol Cell Biol. 1989 Sep;9(9):4032–4037. doi: 10.1128/mcb.9.9.4032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashall F., Bramwell M. E., Harris H. A new marker for human cancer cells. 1 The Ca antigen and the Ca1 antibody. Lancet. 1982 Jul 3;2(8288):1–6. doi: 10.1016/s0140-6736(82)91150-3. [DOI] [PubMed] [Google Scholar]
  3. Benham F. J., Harris H. Human cell lines expressing intestinal alkaline phosphatase. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4016–4019. doi: 10.1073/pnas.76.8.4016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berger J., Garattini E., Hua J. C., Udenfriend S. Cloning and sequencing of human intestinal alkaline phosphatase cDNA. Proc Natl Acad Sci U S A. 1987 Feb;84(3):695–698. doi: 10.1073/pnas.84.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bicknell D. C., Sutherland D. R., Stanbridge E. J., Greaves M. F. Monoclonal antibodies specific for a tumor-associated membrane phosphoprotein in human cell hybrids. Hybridoma. 1985 Summer;4(2):143–152. doi: 10.1089/hyb.1985.4.143. [DOI] [PubMed] [Google Scholar]
  6. Damm K., Thompson C. C., Evans R. M. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature. 1989 Jun 22;339(6226):593–597. doi: 10.1038/339593a0. [DOI] [PubMed] [Google Scholar]
  7. Der C. J., Stanbridge E. J. A tumor-specific membrane phosphoprotein marker in human cell hybrids. Cell. 1981 Nov;26(3 Pt 1):429–438. doi: 10.1016/0092-8674(81)90212-9. [DOI] [PubMed] [Google Scholar]
  8. Fishman W. H. Clinical and biological significance of an isozyme tumor marker--PLAP. Clin Biochem. 1987 Dec;20(6):387–392. doi: 10.1016/0009-9120(87)90003-8. [DOI] [PubMed] [Google Scholar]
  9. Fishman W. H. Perspectives on alkaline phosphatase isoenzymes. Am J Med. 1974 May;56(5):617–650. doi: 10.1016/0002-9343(74)90631-7. [DOI] [PubMed] [Google Scholar]
  10. Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Geiser A. G., Anderson M. J., Stanbridge E. J. Suppression of tumorigenicity in human cell hybrids derived from cell lines expressing different activated ras oncogenes. Cancer Res. 1989 Mar 15;49(6):1572–1577. [PubMed] [Google Scholar]
  12. Gorman C., Padmanabhan R., Howard B. H. High efficiency DNA-mediated transformation of primate cells. Science. 1983 Aug 5;221(4610):551–553. doi: 10.1126/science.6306768. [DOI] [PubMed] [Google Scholar]
  13. Henthorn P. S., Raducha M., Edwards Y. H., Weiss M. J., Slaughter C., Lafferty M. A., Harris H. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1234–1238. doi: 10.1073/pnas.84.5.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henthorn P. S., Raducha M., Kadesch T., Weiss M. J., Harris H. Sequence and characterization of the human intestinal alkaline phosphatase gene. J Biol Chem. 1988 Aug 25;263(24):12011–12019. [PubMed] [Google Scholar]
  15. Henthorn P., Zervos P., Raducha M., Harris H., Kadesch T. Expression of a human placental alkaline phosphatase gene in transfected cells: use as a reporter for studies of gene expression. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6342–6346. doi: 10.1073/pnas.85.17.6342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hirano K., Kusano K., Matsumoto Y., Stigbrand T., Iino S., Hayashi K. Intestinal-like alkaline phosphatase expressed in normal human adult kidney. Eur J Biochem. 1989 Aug 1;183(2):419–423. doi: 10.1111/j.1432-1033.1989.tb14944.x. [DOI] [PubMed] [Google Scholar]
  17. Kam W., Clauser E., Kim Y. S., Kan Y. W., Rutter W. J. Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8715–8719. doi: 10.1073/pnas.82.24.8715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Knoll B. J., Rothblum K. N., Longley M. Nucleotide sequence of the human placental alkaline phosphatase gene. Evolution of the 5' flanking region by deletion/substitution. J Biol Chem. 1988 Aug 25;263(24):12020–12027. [PubMed] [Google Scholar]
  19. Lathe R. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J Mol Biol. 1985 May 5;183(1):1–12. doi: 10.1016/0022-2836(85)90276-1. [DOI] [PubMed] [Google Scholar]
  20. Lee W. H., Shew J. Y., Hong F. D., Sery T. W., Donoso L. A., Young L. J., Bookstein R., Lee E. Y. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature. 1987 Oct 15;329(6140):642–645. doi: 10.1038/329642a0. [DOI] [PubMed] [Google Scholar]
  21. Linial M., Gunderson N., Groudine M. Enhanced transcription of c-myc in bursal lymphoma cells requires continuous protein synthesis. Science. 1985 Dec 6;230(4730):1126–1132. doi: 10.1126/science.2999973. [DOI] [PubMed] [Google Scholar]
  22. Millán J. L. Molecular cloning and sequence analysis of human placental alkaline phosphatase. J Biol Chem. 1986 Mar 5;261(7):3112–3115. [PubMed] [Google Scholar]
  23. Millán J. L. Oncodevelopmental expression and structure of alkaline phosphatase genes. Anticancer Res. 1988 Sep-Oct;8(5A):995–1004. [PubMed] [Google Scholar]
  24. Millán J. L. Promoter structure of the human intestinal alkaline phosphatase gene. Nucleic Acids Res. 1987 Dec 23;15(24):10599–10599. doi: 10.1093/nar/15.24.10599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Münger K., Phelps W. C., Bubb V., Howley P. M., Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol. 1989 Oct;63(10):4417–4421. doi: 10.1128/jvi.63.10.4417-4421.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. O'Hara B. M., Klinger H. P., Curran T., Zhang Y. D., Blair D. G. Levels of fos, ets2, and myb proto-oncogene RNAs correlate with segregation of chromosome 11 of normal cells and with suppression of tumorigenicity in human cell hybrids. Mol Cell Biol. 1987 Aug;7(8):2941–2946. doi: 10.1128/mcb.7.8.2941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Redpath J. L., Sun C., Colman M., Stanbridge E. J. Neoplastic transformation of human hybrid cells by gamma radiation: a quantitative assay. Radiat Res. 1987 Jun;110(3):468–472. [PubMed] [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saxon P. J., Srivatsan E. S., Stanbridge E. J. Introduction of human chromosome 11 via microcell transfer controls tumorigenic expression of HeLa cells. EMBO J. 1986 Dec 20;5(13):3461–3466. doi: 10.1002/j.1460-2075.1986.tb04670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Srivatsan E. S., Benedict W. F., Stanbridge E. J. Implication of chromosome 11 in the suppression of neoplastic expression in human cell hybrids. Cancer Res. 1986 Dec;46(12 Pt 1):6174–6179. [PubMed] [Google Scholar]
  31. Stanbridge E. J., Der C. J., Doersen C. J., Nishimi R. Y., Peehl D. M., Weissman B. E., Wilkinson J. E. Human cell hybrids: analysis of transformation and tumorigenicity. Science. 1982 Jan 15;215(4530):252–259. doi: 10.1126/science.7053574. [DOI] [PubMed] [Google Scholar]
  32. Stanbridge E. J., Flandermeyer R. R., Daniels D. W., Nelson-Rees W. A. Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somatic Cell Genet. 1981 Nov;7(6):699–712. doi: 10.1007/BF01538758. [DOI] [PubMed] [Google Scholar]
  33. Stanbridge E. J., Rosen S. W., Sussman H. H. Expression of the alpha subunit of human chorionic gonadotropin is specifically correlated with tumorigenic expression in human cell hybrids. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6242–6245. doi: 10.1073/pnas.79.20.6242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stanbridge E. J. Suppression of malignancy in human cells. Nature. 1976 Mar 4;260(5546):17–20. doi: 10.1038/260017a0. [DOI] [PubMed] [Google Scholar]
  35. Stanbridge E. J., Wilkinson J. Dissociation of anchorage independence form tumorigenicity in human cell hybrids. Int J Cancer. 1980 Jul 15;26(1):1–8. doi: 10.1002/ijc.2910260102. [DOI] [PubMed] [Google Scholar]
  36. Sun C., Redpath J. L., Colman M., Stanbridge E. J. Further studies on the radiation-induced expression of a tumor-specific antigen in human cell hybrids. Radiat Res. 1988 Apr;114(1):84–93. [PubMed] [Google Scholar]
  37. Sutherland D. R., Bicknell D. C., Downward J., Parker P., Waterfield M. D., Baker M. A., Greaves M. F., Stanbridge E. J. Structural and functional features of a cell surface phosphoglycoprotein associated with tumorigenic phenotype in human fibroblast x HeLa cell hybrids. J Biol Chem. 1986 Feb 15;261(5):2418–2424. [PubMed] [Google Scholar]
  38. Tokunaga K., Taniguchi H., Yoda K., Shimizu M., Sakiyama S. Nucleotide sequence of a full-length cDNA for mouse cytoskeletal beta-actin mRNA. Nucleic Acids Res. 1986 Mar 25;14(6):2829–2829. doi: 10.1093/nar/14.6.2829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van der Eb A. J., Graham F. L. Assay of transforming activity of tumor virus DNA. Methods Enzymol. 1980;65(1):826–839. doi: 10.1016/s0076-6879(80)65077-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES