Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Mar;87(5):1860–1864. doi: 10.1073/pnas.87.5.1860

"Collective coding" of correlated cone signals in the retinal ganglion cell.

Y Tsukamoto 1, R G Smith 1, P Sterling 1
PMCID: PMC53583  PMID: 2308947

Abstract

The signals in neighboring cones are partially correlated due to local correlations of luminance in the visual scene. By summing these partially correlated signals, the retinal ganglion cell improves its signal/noise ratio (compared to the signal/noise ratio in a cone) and expands the variance of its response to fill its dynamic range. Our computations prove that the optimal weighting function for this summation is dome-shaped. The computations also show that (assuming a particular space constant for the correlation function) ganglion cell collecting area and cone density are matched at all eccentricities such that the signal/noise ratio improves by a constant factor. The signal/noise improvement factor for beta ganglion cells in cat retina is about 4.

Full text

PDF
1861

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARLOW H. B. Increment thresholds at low intensities considered as signal/noise discriminations. J Physiol. 1957 May 23;136(3):469–488. doi: 10.1113/jphysiol.1957.sp005774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARLOW H. B. Summation and inhibition in the frog's retina. J Physiol. 1953 Jan;119(1):69–88. doi: 10.1113/jphysiol.1953.sp004829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banks M. S., Geisler W. S., Bennett P. J. The physical limits of grating visibility. Vision Res. 1987;27(11):1915–1924. doi: 10.1016/0042-6989(87)90057-5. [DOI] [PubMed] [Google Scholar]
  4. Boycott B. B., Wässle H. The morphological types of ganglion cells of the domestic cat's retina. J Physiol. 1974 Jul;240(2):397–419. doi: 10.1113/jphysiol.1974.sp010616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cleland B. G., Harding T. H., Tulunay-Keesey U. Visual resolution and receptive field size: examination of two kinds of cat retinal ganglion cell. Science. 1979 Sep 7;205(4410):1015–1017. doi: 10.1126/science.472720. [DOI] [PubMed] [Google Scholar]
  6. Dann J. F., Buhl E. H., Peichl L. Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina. J Neurosci. 1988 May;8(5):1485–1499. doi: 10.1523/JNEUROSCI.08-05-01485.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KUFFLER S. W. Discharge patterns and functional organization of mammalian retina. J Neurophysiol. 1953 Jan;16(1):37–68. doi: 10.1152/jn.1953.16.1.37. [DOI] [PubMed] [Google Scholar]
  8. Laughlin S. B., Howard J., Blakeslee B. Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):437–467. doi: 10.1098/rspb.1987.0054. [DOI] [PubMed] [Google Scholar]
  9. Peichl L., Wässle H. Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. J Physiol. 1979 Jun;291:117–141. doi: 10.1113/jphysiol.1979.sp012803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Robson J. G., Enroth-Cugell C. Light distribution in the cat's retinal image. Vision Res. 1978;18(2):159–173. doi: 10.1016/0042-6989(78)90181-5. [DOI] [PubMed] [Google Scholar]
  11. Srinivasan M. V., Laughlin S. B., Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci. 1982 Nov 22;216(1205):427–459. doi: 10.1098/rspb.1982.0085. [DOI] [PubMed] [Google Scholar]
  12. Steinberg R. H., Reid M., Lacy P. L. The distribution of rods and cones in the retina of the cat (Felis domesticus). J Comp Neurol. 1973 Mar 15;148(2):229–248. doi: 10.1002/cne.901480209. [DOI] [PubMed] [Google Scholar]
  13. Sterling P., Freed M. A., Smith R. G. Architecture of rod and cone circuits to the on-beta ganglion cell. J Neurosci. 1988 Feb;8(2):623–642. doi: 10.1523/JNEUROSCI.08-02-00623.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wässle H. Optical quality of the cat eye. Vision Res. 1971 Sep;11(9):995–1006. doi: 10.1016/0042-6989(71)90219-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES