Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Apr;87(7):2740–2744. doi: 10.1073/pnas.87.7.2740

Structure and regulation of the gene for dGTP triphosphohydrolase from Escherichia coli.

S M Wurgler 1, C C Richardson 1
PMCID: PMC53766  PMID: 2157212

Abstract

Escherichia coli encodes an enzyme, deoxyguanosine triphosphate triphosphohydrolase (dGTPase, EC 3.1.5.1), that cleaves dGTP into deoxyguanosine and tripolyphosphate. An E. coli mutant, optA1, contains a 50-fold increased level of dGTPase and cannot support the growth of phage T7 defective in [corrected] gene 1.2, whose product is an inhibitor of dGTPase. The optA1 mutation maps to 3.6 min on the E. coli chromosome and is closely linked to dapD. We have isolated the gene encoding dGTPase (dgt) from wild-type E. coli and determined its nucleotide sequence. The dgt gene lies immediately upstream of htrA and 6 kilobases from dapD, in the same region as the optA1 mutation. The dgt structural gene is 1515 base pairs, encoding a protein of 59,315 daltons, in agreement with the size and N-terminal amino acid sequence of the purified protein. An E. coli strain containing a null allele has no detectable phenotype when grown at 30-42 degrees C in rich medium. A transition of C to T in a potential promoter of dgt is required for expression of the optA1 phenotype.

Full text

PDF
2741

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauchamp B. B., Richardson C. C. A unique deoxyguanosine triphosphatase is responsible for the optA1 phenotype of Escherichia coli. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2563–2567. doi: 10.1073/pnas.85.8.2563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradley M. K., Smith T. F., Lathrop R. H., Livingston D. M., Webster T. A. Consensus topography in the ATP binding site of the simian virus 40 and polyomavirus large tumor antigens. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4026–4030. doi: 10.1073/pnas.84.12.4026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bukhari A. I., Taylor A. L. Genetic analysis of diaminopimelic acid- and lysine-requiring mutants of Escherichia coli. J Bacteriol. 1971 Mar;105(3):844–854. doi: 10.1128/jb.105.3.844-854.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Calos M. P. DNA sequence for a low-level promoter of the lac repressor gene and an 'up' promoter mutation. Nature. 1978 Aug 24;274(5673):762–765. doi: 10.1038/274762a0. [DOI] [PubMed] [Google Scholar]
  5. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  6. Gauss P., Doherty D. H., Gold L. Bacterial and phage mutations that reveal helix-unwinding activities required for bacteriophage T4 DNA replication. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1669–1673. doi: 10.1073/pnas.80.6.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gauss P., Gayle M., Winter R. B., Gold L. The bacteriophage T4 dexA gene: sequence and analysis of a gene conditionally required for DNA replication. Mol Gen Genet. 1987 Jan;206(1):24–34. doi: 10.1007/BF00326532. [DOI] [PubMed] [Google Scholar]
  8. Gunsalus R. P., Yanofsky C. Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7117–7121. doi: 10.1073/pnas.77.12.7117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  10. Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huber H. E., Beauchamp B. B., Richardson C. C. Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7. J Biol Chem. 1988 Sep 25;263(27):13549–13556. [PubMed] [Google Scholar]
  12. Innis M. A., Myambo K. B., Gelfand D. H., Brow M. A. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9436–9440. doi: 10.1073/pnas.85.24.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KORNBERG S. R., LEHMAN I. R., BESSMAN M. J., SIMMS E. S., KORNBERG A. Enzymatic cleavage of deoxyguanosine triphosphate to deoxyguanosine and tripolyphosphate. J Biol Chem. 1958 Jul;233(1):159–162. [PubMed] [Google Scholar]
  14. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
  15. Lee C. A., Fournier M. J., Beckwith J. Escherichia coli 6S RNA is not essential for growth or protein secretion. J Bacteriol. 1985 Mar;161(3):1156–1161. doi: 10.1128/jb.161.3.1156-1161.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lipinska B., Sharma S., Georgopoulos C. Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res. 1988 Nov 11;16(21):10053–10067. doi: 10.1093/nar/16.21.10053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Myers J. A., Beauchamp B. B., Richardson C. C. Gene 1.2 protein of bacteriophage T7. Effect on deoxyribonucleotide pools. J Biol Chem. 1987 Apr 15;262(11):5288–5292. [PubMed] [Google Scholar]
  18. Nakai H., Richardson C. C. The gene 1.2 protein of bacteriophage T7 interacts with the Escherichia coli dGTP triphosphohydrolase to form a GTP-binding protein. J Biol Chem. 1990 Mar 15;265(8):4411–4419. [PubMed] [Google Scholar]
  19. Pettis G. S., Brickman T. J., McIntosh M. A. Transcriptional mapping and nucleotide sequence of the Escherichia coli fepA-fes enterobactin region. Identification of a unique iron-regulated bidirectional promoter. J Biol Chem. 1988 Dec 15;263(35):18857–18863. [PubMed] [Google Scholar]
  20. Quirk S., Seto D., Bhatnagar S. K., Gauss P., Gold L., Bessman M. J. Location and molecular cloning of the structural gene for the deoxyguanosine triphosphate triphosphohydrolase of Escherichia coli. Mol Microbiol. 1989 Oct;3(10):1391–1395. doi: 10.1111/j.1365-2958.1989.tb00121.x. [DOI] [PubMed] [Google Scholar]
  21. Saito H., Richardson C. C. Genetic analysis of gene 1.2 of bacteriophage T7: isolation of a mutant of Escherichia coli unable to support the growth of T7 gene 1.2 mutants. J Virol. 1981 Jan;37(1):343–351. doi: 10.1128/jvi.37.1.343-351.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Seto D., Bhatnagar S. K., Bessman M. J. The purification and properties of deoxyguanosine triphosphate triphosphohydrolase from Escherichia coli. J Biol Chem. 1988 Jan 25;263(3):1494–1499. [PubMed] [Google Scholar]
  23. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith D. R., Rood J. I., Bird P. I., Sneddon M. K., Calvo J. M., Morrison J. F. Amplification and modification of dihydrofolate reductase in Escherichia coli. Nucleotide sequence of fol genes from mutationally altered plasmids. J Biol Chem. 1982 Aug 10;257(15):9043–9048. [PubMed] [Google Scholar]
  25. Strauch K. L., Johnson K., Beckwith J. Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol. 1989 May;171(5):2689–2696. doi: 10.1128/jb.171.5.2689-2696.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tabor S., Richardson C. C. Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J Biol Chem. 1989 Apr 15;264(11):6447–6458. [PubMed] [Google Scholar]
  27. Vogelstein B., Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A. 1979 Feb;76(2):615–619. doi: 10.1073/pnas.76.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. doi: 10.1016/0378-1119(84)90012-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES