Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Apr;87(8):3147–3150. doi: 10.1073/pnas.87.8.3147

Mutation eliminating mitochondrial leader sequence of methylmalonyl-CoA mutase causes muto methylmalonic acidemia.

F D Ledley 1, R Jansen 1, S U Nham 1, W A Fenton 1, L E Rosenberg 1
PMCID: PMC53851  PMID: 1970180

Abstract

Methylmalonyl-CoA mutase (EC 5.4.99.2) is a mitochondrial matrix enzyme whose activity is deficient in the inherited disorder methylmalonic acidemia. Previous studies on primary fibroblast cell lines from patients with methylmalonic acidemia have delineated a variety of biochemical phenotypes underlying this disorder. One cell line with primary mutase apoenzyme deficiency exhibited a particularly unusual phenotype; it expressed an abnormally small and unstable immunoreactive protein, which was not imported by mitochondria. We now report cloning and sequencing of the cDNA encoding this mutant protein. The mutation is a single base change, a cytosine----thymine transition, which introduces an amber termination codon at position 17 within the mitochondrial leader sequence. The immunoreactive protein produced by these cells reflects translation from AUG codons downstream from this termination codon and, hence, lacks a mitochondrial leader peptide. This mutation represents a complex prototype for a class of mutations in which absence of the mitochondrial targeting sequence leads to absence of a functioning gene product.

Full text

PDF
3148

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmair A., Varshavsky A. The degradation signal in a short-lived protein. Cell. 1989 Mar 24;56(6):1019–1032. doi: 10.1016/0092-8674(89)90635-1. [DOI] [PubMed] [Google Scholar]
  2. Cheng M. Y., Hartl F. U., Martin J., Pollock R. A., Kalousek F., Neupert W., Hallberg E. M., Hallberg R. L., Horwich A. L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature. 1989 Feb 16;337(6208):620–625. doi: 10.1038/337620a0. [DOI] [PubMed] [Google Scholar]
  3. Fenton W. A., Hack A. M., Kraus J. P., Rosenberg L. E. Immunochemical studies of fibroblasts from patients with methylmalonyl-CoA mutase apoenzyme deficiency: detection of a mutation interfering with mitochondrial import. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1421–1424. doi: 10.1073/pnas.84.5.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fenton W. A., Hack A. M., Willard H. F., Gertler A., Rosenberg L. E. Purification and properties of methylmalonyl coenzyme A mutase from human liver. Arch Biochem Biophys. 1982 Apr 1;214(2):815–823. doi: 10.1016/0003-9861(82)90088-1. [DOI] [PubMed] [Google Scholar]
  5. Gibbs R. A., Nguyen P. N., McBride L. J., Koepf S. M., Caskey C. T. Identification of mutations leading to the Lesch-Nyhan syndrome by automated direct DNA sequencing of in vitro amplified cDNA. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1919–1923. doi: 10.1073/pnas.86.6.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Horwich A. L., Fenton W. A., Firgaira F. A., Fox J. E., Kolansky D., Mellman I. S., Rosenberg L. E. Expression of amplified DNA sequences for ornithine transcarbamylase in HeLa cells: arginine residues may be required for mitochondrial import of enzyme precursor. J Cell Biol. 1985 May;100(5):1515–1521. doi: 10.1083/jcb.100.5.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jansen R., Kalousek F., Fenton W. A., Rosenberg L. E., Ledley F. D. Cloning of full-length methylmalonyl-CoA mutase from a cDNA library using the polymerase chain reaction. Genomics. 1989 Feb;4(2):198–205. doi: 10.1016/0888-7543(89)90300-5. [DOI] [PubMed] [Google Scholar]
  8. Kolhouse J. F., Utley C., Allen R. H. Isolation and characterization of methylmalonyl-CoA mutase from human placenta. J Biol Chem. 1980 Apr 10;255(7):2708–2712. [PubMed] [Google Scholar]
  9. Kolhouse J. F., Utley C., Fenton W. A., Rosenberg L. E. Immunochemical studies on cultured fibroblasts from patients with inherited methylmalonic acidemia. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7737–7741. doi: 10.1073/pnas.78.12.7737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ledley F. D., Lumetta M., Nguyen P. N., Kolhouse J. F., Allen R. H. Molecular cloning of L-methylmalonyl-CoA mutase: gene transfer and analysis of mut cell lines. Proc Natl Acad Sci U S A. 1988 May;85(10):3518–3521. doi: 10.1073/pnas.85.10.3518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Scharf S. J., Horn G. T., Erlich H. A. Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science. 1986 Sep 5;233(4768):1076–1078. doi: 10.1126/science.3461561. [DOI] [PubMed] [Google Scholar]
  12. Vrieling H., Simons J. W., van Zeeland A. A. Nucleotide sequence determination of point mutations at the mouse HPRT locus using in vitro amplification of HPRT mRNA sequences. Mutat Res. 1988 Mar;198(1):107–113. doi: 10.1016/0027-5107(88)90046-2. [DOI] [PubMed] [Google Scholar]
  13. van der Werf S., Bradley J., Wimmer E., Studier F. W., Dunn J. J. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2330–2334. doi: 10.1073/pnas.83.8.2330. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES