Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1957 Nov;32(6):591–600. doi: 10.1104/pp.32.6.591

Carbon Dioxide Fixation into Oxalacetate in Higher Plants. 1,2

Mendel Mazelis 1,3, Birgit Vennesland 1
PMCID: PMC540984  PMID: 16655053

Full text

PDF
591

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNON D. I., ALLEN M. B., WHATLEY F. R. Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions. Biochim Biophys Acta. 1956 Jun;20(3):449–461. doi: 10.1016/0006-3002(56)90339-0. [DOI] [PubMed] [Google Scholar]
  2. BANDURSKI R. S. Further studies on the enzymatic synthesis of oxalacetate from phosphorylenolpyruvate and carbon dioxide. J Biol Chem. 1955 Nov;217(1):137–150. [PubMed] [Google Scholar]
  3. BANDURSKI R. S., GREINER C. M. The enzymatic synthesis of oxalacetate from phosphoryl-enolpyruvate and carbon dioxide. J Biol Chem. 1953 Oct;204(2):781–786. [PubMed] [Google Scholar]
  4. BANDURSKI R. S., LIPMANN F. Studies on an oxalacetic carboxylase from liver mitochondria. J Biol Chem. 1956 Apr;219(2):741–752. [PubMed] [Google Scholar]
  5. BURTON K., KREBS H. A. The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenosinetriphosphate. Biochem J. 1953 Apr;54(1):94–107. doi: 10.1042/bj0540094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GRAVES J. L., PENNINGTON R. J., UTTER M. F., VENNESLAND B. The mechanism of the reversible carboxylation of phosphoenolpyruvate. J Biol Chem. 1956 Nov;223(1):551–557. [PubMed] [Google Scholar]
  7. HUMPHREYS T. E., CONN E. E. The oxidation of reduced diphosphopyridine nucleotide by lupine mitochondria. Arch Biochem Biophys. 1956 Jan;60(1):226–243. doi: 10.1016/0003-9861(56)90413-1. [DOI] [PubMed] [Google Scholar]
  8. Laties G. G. The Physical Environment and Oxidative and Phosphorylative Capacities of Higher Plant Mitochondria. Plant Physiol. 1953 Oct;28(4):557–575. doi: 10.1104/pp.28.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Price C. A., Thimann K. V. The Estimation of Dehydrogenases in Plant Tissue. Plant Physiol. 1954 Mar;29(2):113–124. doi: 10.1104/pp.29.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. STAFFORD H. A., MAGALDI A., VENNESLAND B. The enzymatic reduction of hydroxypyruvic acid to D-glyceric acid in higher plants. J Biol Chem. 1954 Apr;207(2):621–629. [PubMed] [Google Scholar]
  11. Saltman P., Kunitake G., Spolter H., Stitts C. The Dark Fixation of CO(2) by Succulent Leaves: The First Products. Plant Physiol. 1956 Nov;31(6):464–468. doi: 10.1104/pp.31.6.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. TCHEN T. T., LOEWUS F. A., VENNESLAND B. The mechanism of enzymatic carbon dioxide fixation into oxal-acetate. J Biol Chem. 1955 Apr;213(2):547–555. [PubMed] [Google Scholar]
  13. TCHEN T. T., VENNESLAND B. Enzymatic carbon dioxide fixation into oxal-acetate in wheat germ. J Biol Chem. 1955 Apr;213(2):533–546. [PubMed] [Google Scholar]
  14. UTTER M. F., KURAHASHI K. Mechanism of action of oxalacetic carboxylase. J Biol Chem. 1954 Apr;207(2):821–841. [PubMed] [Google Scholar]
  15. UTTER M. F., KURAHASHI K., ROSE I. A. Some properties of oxalacetic carboxylase. J Biol Chem. 1954 Apr;207(2):803–819. [PubMed] [Google Scholar]
  16. Wood H. G., Werkman C. H. The utilization of CO(2) by the propionic acid bacteria. Biochem J. 1938 Jul;32(7):1262–1271. doi: 10.1042/bj0321262. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES