Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. G., Stafford H. A., Conn E. E., Vennesland B. THE DISTRIBUTION IN HIGHER PLANTS OF TRIPHOSPHOPYRIDINE NUCLEOTIDE-LINKED ENZYME SYSTEMS CAPABLE OF REDUCING GLUTATHIONE. Plant Physiol. 1952 Oct;27(4):675–684. doi: 10.1104/pp.27.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BANDURSKI R. S., GREINER C. M. The enzymatic synthesis of oxalacetate from phosphoryl-enolpyruvate and carbon dioxide. J Biol Chem. 1953 Oct;204(2):781–786. [PubMed] [Google Scholar]
- Barnett R. C., Stafford H. A., Conn E. E., Vennesland B. Phosphogluconic Dehydrogenase in Higher Plants. Plant Physiol. 1953 Jan;28(1):115–122. doi: 10.1104/pp.28.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREENBERG D. M., ICHIHARA A. Further studies on the pathway of serine formation from carbohydrate. J Biol Chem. 1957 Jan;224(1):331–340. [PubMed] [Google Scholar]
- Graf G. E., Aronoff S. Carbon Dioxide Fixation by Roots. Science. 1955 Feb 11;121(3137):211–212. doi: 10.1126/science.121.3137.211. [DOI] [PubMed] [Google Scholar]
- Jacobson L. Carbon Dioxide Fixation and Ion Absorption in Barley Roots. Plant Physiol. 1955 May;30(3):264–269. doi: 10.1104/pp.30.3.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson L., Overstreet R., King H. M., Handley R. A STUDY OF POTASSIUM ABSORPTION BY BARLEY ROOTS. Plant Physiol. 1950 Oct;25(4):639–647. doi: 10.1104/pp.25.4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KORNBERG H. L., BEEVERS H. A mechanism of conversion of fat to carbohydrate in castor beans. Nature. 1957 Jul 6;180(4575):35–36. doi: 10.1038/180035a0. [DOI] [PubMed] [Google Scholar]
- KORNBERG H. L., KREBS H. A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature. 1957 May 18;179(4568):988–991. doi: 10.1038/179988a0. [DOI] [PubMed] [Google Scholar]
- KORNBERG H. L., MADSEN N. B. Synthesis of C4-dicarboxylic acids from acetate by a glyoxylate bypass of the tricarboxylic acid cycle. Biochim Biophys Acta. 1957 Jun;24(3):651–653. doi: 10.1016/0006-3002(57)90268-8. [DOI] [PubMed] [Google Scholar]
- KURSANOV A. L., KRIUKOVA N. N., VYSKREBENTSEVA E. I. Produkty temnovoi fiksatsii CO2, obrazuiushchiesia v rastenii pri pitanii uglekislotoi cherez korni. Biokhimiia. 1953 Sep-Oct;18(5):632–637. [PubMed] [Google Scholar]
- OCHOA S. Biological mechanisms of carboxylation and decarboxylation. Physiol Rev. 1951 Jan;31(1):56–106. doi: 10.1152/physrev.1951.31.1.56. [DOI] [PubMed] [Google Scholar]
- Saltman P., Lynch V. H., Kunitake G. M., Stitt C., Spolter H. The Dark Fixation of CO(2) by Succulent Leaves: Metabolic Changes Subsequent to Initial Fixation. Plant Physiol. 1957 May;32(3):197–200. doi: 10.1104/pp.32.3.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TCHEN T. T., VENNESLAND B. Enzymatic carbon dioxide fixation into oxal-acetate in wheat germ. J Biol Chem. 1955 Apr;213(2):533–546. [PubMed] [Google Scholar]
- WALKER D. A. Physiological studies on acid metabolism. 4. Phosphoenolpyruvic carboxylase activity in extracts of Crassulacean plants. Biochem J. 1957 Sep;67(1):73–79. doi: 10.1042/bj0670073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YOUNG L. C., GRAHAM J. S. Carbon dioxide fixation in particulate preparations from barley roots. Nature. 1958 Apr 12;181(4615):1071–1072. doi: 10.1038/1811071a0. [DOI] [PubMed] [Google Scholar]