Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1974 Jan;53(1):76–79. doi: 10.1104/pp.53.1.76

Rapid Phytochrome-mediated Changes in Adenosine 5′-Triphosphate Content of Etiolated Bean Buds 1

Judith M White a,2, Carl S Pike a,3
PMCID: PMC541336  PMID: 16658656

Abstract

This study was designed to determine the effects of red and far red irradiation on ATP metabolism in etiolated bean buds (Phaseolus vulgaris L. var. Red Kidney). Compared to dark controls, red irradiated buds show an initial decline in ATP content at 15 seconds following a 5-minute irradiation. ATP content then rapidly rises to a peak at 1 minute, and then slowly returns to the baseline. The 1-minute promotion of ATP content is red/far red reversible. Acetylcholine does not appear to mimic red light in this system; it causes a marked decrease in ATP content.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addanki S., Sotos J. F., Rearick P. D. Rapid determination of picomole quantities of ATP with a liquid scintillation counter. Anal Biochem. 1966 Feb;14(2):261–264. doi: 10.1016/0003-2697(66)90135-7. [DOI] [PubMed] [Google Scholar]
  2. Bitensky M. W., Gorman R. E., Miller W. H. Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors. Proc Natl Acad Sci U S A. 1971 Mar;68(3):561–562. doi: 10.1073/pnas.68.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borthwick H. A., Hendricks S. B., Parker M. W., Toole E. H., Toole V. K. A Reversible Photoreaction Controlling Seed Germination. Proc Natl Acad Sci U S A. 1952 Aug;38(8):662–666. doi: 10.1073/pnas.38.8.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briggs W. R., Siegelman H. W. Distribution of Phytochrome in Etiolated Seedlings. Plant Physiol. 1965 Sep;40(5):934–941. doi: 10.1104/pp.40.5.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cole H. A., Wimpenny J. W., Hughes D. E. The ATP pool in Escherichia coli. I. Measurement of the pool using modified luciferase assay. Biochim Biophys Acta. 1967;143(3):445–453. doi: 10.1016/0005-2728(67)90050-3. [DOI] [PubMed] [Google Scholar]
  6. Hendricks S. B., Borthwick H. A. The function of phytochrome in regulation of plant growth. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2125–2130. doi: 10.1073/pnas.58.5.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hopkins D. W., Butler W. L. Immunochemical and spectroscopic evidence for protein conformational changes in phytochrome transformations. Plant Physiol. 1970 May;45(5):567–570. doi: 10.1104/pp.45.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jaffe M. J. Phytochrome-mediated bioelectric potentials in mung bean seedlings. Science. 1968 Nov 29;162(3857):1016–1017. doi: 10.1126/science.162.3857.1016. [DOI] [PubMed] [Google Scholar]
  9. Lin C. Y., Key J. L. Dissocation and reassembly of polyribosomes in relation to protein synthesis in the soybean root. J Mol Biol. 1967 Jun 14;26(2):237–247. doi: 10.1016/0022-2836(67)90294-x. [DOI] [PubMed] [Google Scholar]
  10. Manabe K. A Rapid Phytochrome-dependent Reduction of Nicotinamide Adenine Dinucleotide Phosphate in Particle Fraction from Etiolated Bean Hypocotyl. Plant Physiol. 1973 May;51(5):982–983. doi: 10.1104/pp.51.5.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mohr H., Bienger I., Lange H. Primary reaction of phytochrome. Nature. 1971 Mar 5;230(5288):56–58. doi: 10.1038/230056a0. [DOI] [PubMed] [Google Scholar]
  12. Newman I. A., Briggs W. R. Phytochrome-mediated Electric Potential Changes in Oat Seedlings. Plant Physiol. 1972 Dec;50(6):687–693. doi: 10.1104/pp.50.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Satter R. L., Applewhite P. B., Galston A. W. Phytochrome-controlled Nyctinasty in Albizzia julibrissin: V. Evidence against Acetylcholine Participation. Plant Physiol. 1972 Oct;50(4):523–525. doi: 10.1104/pp.50.4.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sutherland E. W. Studies on the mechanism of hormone action. Science. 1972 Aug 4;177(4047):401–408. doi: 10.1126/science.177.4047.401. [DOI] [PubMed] [Google Scholar]
  15. Tanada T. A rapid photoreversible response of barley root tips in the presence of 3-indoleacetic Acid. Proc Natl Acad Sci U S A. 1968 Feb;59(2):376–380. doi: 10.1073/pnas.59.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tanada T. Substances essential for a red, far-red light reversible attachment of mung bean root tips to glass. Plant Physiol. 1968 Dec;43(12):2070–2071. doi: 10.1104/pp.43.12.2070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yunghans H., Jaffe M. J. Rapid Respiratory Changes Due to Red Light or Acetylcholine during the Early Events of Phytochrome-mediated Photomorphogenesis. Plant Physiol. 1972 Jan;49(1):1–7. doi: 10.1104/pp.49.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES