Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1974 Jul;54(1):116–121. doi: 10.1104/pp.54.1.116

Structure, Gas Chromatographic Measurement, and Function of Suberin Synthesized by Potato Tuber Tissue Slices 1

P E Kolattukudy a,2, B B Dean a
PMCID: PMC541513  PMID: 16658825

Abstract

The polymeric material (suberin) of the wound periderm of potato tuber slices was analyzed after depolymerization with LiAIH4 in tetrahydrofuran or BF3 in methanol with the use of thin layer chromatography, chemical modification, and combined gas-liquid chromatography and mass spectrometry. Fatty acids (C16 to C26), fatty alcohols (C16 to C26), octadec-9-ene-1, 18-dioic acid, and 18-hydroxy-octadec-9-enoic acid were identified to be the major components. Based on the structural information that the two bifunctional C18 molecules constituted a major portion of suberin, a gas chromatographic method of measuring suberization was developed. This method consisted of hydrogenolysis of powdered tissue followed by thin layer chromatography and gas chromatographic measurement of octadecene-1, 18-diol as the trimethylsilyl ether. With this assay it was shown that the development of resistance to water loss by the tissue slices was directly proportional to the quantity of the bifunctional C18 molecules, thus providing evidence that a function of suberin is prevention of water loss.

Full text

PDF
117

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Kolattukudy P. E., Walton T. J. Structure and biosynthesis of the hydroxy fatty acids of cutin in Vicia faba leaves. Biochemistry. 1972 May 9;11(10):1897–1907. doi: 10.1021/bi00760a026. [DOI] [PubMed] [Google Scholar]
  2. Walton T. J., Kolattukudy P. E. Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry. Biochemistry. 1972 May 9;11(10):1885–1896. doi: 10.1021/bi00760a025. [DOI] [PubMed] [Google Scholar]
  3. Willemot C., Stumpf P. K. Fat metabolism in higher plants. XXXIV. Development of fatty acid synthetase as a function of protein synthesis in aging potato tuber slices. Plant Physiol. 1967 Mar;42(3):391–397. doi: 10.1104/pp.42.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES