Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Aug;58(2):147–151. doi: 10.1104/pp.58.2.147

Control of Changes in Mitochondrial Activities during Aging of Potato Slices 1

Pierre Dizengremel a,2, Claude Lance a
PMCID: PMC542201  PMID: 16659636

Abstract

Aging of slices of potato tuber (Solanum tuberosum L.) in an aerated liquid medium induces a number of changes in mitochondrial activities. A nonphosphorylative, cyanide-insensitive electron transport pathway (alternate pathway) is brought into operation. The rate of oxidation of exogenous NADH increases markedly and the efficiency of phosphorylation with this substrate remains the same as it is in mitochondria isolated from fresh tissue slices. On the contrary, the rates of oxidation of succinate and malate do not increase while lower phosphorylative efficiencies indicate that a fraction of their electrons reaches oxygen through the alternate pathway. Chloramphenicol, a specific inhibitor of the mitochondrial protein-synthesizing system, has no effect whatsoever on these events. However, cycloheximide, which acts on the corresponding cytoplasmic system, prevents both the development of the alternate pathway and the rise in the rate of oxidation of exogenous NADH. These effects are interpreted as showing a specific control of the cytoplasmic protein-synthesizing system on the changes in mitochondrial oxidations during aging.

Full text

PDF
150

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahr J. T., Bonner W. D., Jr Cyanide-insensitive respiration. I. The steady states of skunk cabbage spadix and bean hypocotyl mitochondria. J Biol Chem. 1973 May 25;248(10):3441–3445. [PubMed] [Google Scholar]
  2. Bendall D. S., Bonner W. D. Cyanide-insensitive Respiration in Plant Mitochondria. Plant Physiol. 1971 Feb;47(2):236–245. doi: 10.1104/pp.47.2.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  4. CLICK R. E., HACKETT D. P. THE ROLE OF PROTEIN AND NUCLEIC ACID SYNTHESIS IN THE DEVELOPMENT OF RESPIRATION IN POTATO TUBER SLICES. Proc Natl Acad Sci U S A. 1963 Aug;50:243–250. doi: 10.1073/pnas.50.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Douce R., Mannella C. A., Bonner W. D., Jr The external NADH dehydrogenases of intact plant mitochondria. Biochim Biophys Acta. 1973 Jan 18;292(1):105–116. doi: 10.1016/0005-2728(73)90255-7. [DOI] [PubMed] [Google Scholar]
  6. Edwards D. L., Rsenberg E., Maroney P. A. Induction of cyanide-insensitive respiration in Neurospora crassa. J Biol Chem. 1974 Jun 10;249(11):3551–3556. [PubMed] [Google Scholar]
  7. Ellis R. J., Macdonald I. R. Specificity of cycloheximide in higher plant systems. Plant Physiol. 1970 Aug;46(2):227–232. doi: 10.1104/pp.46.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hackett D. P., Haas D. W., Griffiths S. K., Niederpruem D. J. Studies on Development of Cyanide-resistant Respiration in Potato Tuber Slices. Plant Physiol. 1960 Jan;35(1):8–19. doi: 10.1104/pp.35.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lambowitz A. M., Smith E. W., Slayman C. W. Oxidative phosphorylation in Neurospora mitochondria. Studies on wild type, poky, and chloramphenicol-induced wild type. J Biol Chem. 1972 Aug 10;247(15):4859–4865. [PubMed] [Google Scholar]
  10. Schonbaum G. R., Bonner W. D., Jr, Storey B. T., Bahr J. T. Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol. 1971 Jan;47(1):124–128. doi: 10.1104/pp.47.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Solomos T., Laties G. G. Similarities between the Actions of Ethylene and Cyanide in Initiating the Climacteric and Ripening of Avocados. Plant Physiol. 1974 Oct;54(4):506–511. doi: 10.1104/pp.54.4.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Storey B. T., Bahr J. T. The respiratory chain of plant mitochondria. I. Electron transport between succinate and oxygen in skunk cabbage mitochondria. Plant Physiol. 1969 Jan;44(1):115–125. doi: 10.1104/pp.44.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. THIMANN K. V., YOCUM C. S., HACKETT D. P. Terminal oxidases and growth in plant tissues. III. Terminal oxidation in potato tuber tissue. Arch Biochem Biophys. 1954 Nov;53(1):239–257. doi: 10.1016/0003-9861(54)90249-0. [DOI] [PubMed] [Google Scholar]
  14. Tomlinson P. F., Moreland D. E. Cyanide-resistant Respiration of Sweet Potato Mitochondria. Plant Physiol. 1975 Feb;55(2):365–369. doi: 10.1104/pp.55.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wiskich J. T., Bonner W. D. Preparation and Properties of Sweet Potato Mitochondria. Plant Physiol. 1963 Sep;38(5):594–604. doi: 10.1104/pp.38.5.594. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES