Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Apr;59(4):610–614. doi: 10.1104/pp.59.4.610

Adenylate Metabolism of Embryonic Axes from Deteriorated Soybean Seeds

James D Anderson 1
PMCID: PMC542458  PMID: 16659903

Abstract

RNA and protein syntheses in axes excised from dry soybean (Glycine max L.) seeds at different levels of deterioration were assayed. Low rates of protein synthesis in slightly deteriorated seeds were not due to losses in ribosomal or soluble fraction activities. However, the lowered rates of RNA and protein syntheses of deteriorated seeds were associated with reduced ATP content of the tissues. Adenine and adenosine conversions to ATP were reduced in deteriorated axes, and these reductions were reflected in reduced incorporation of these compounds into RNA.

Full text

PDF
612

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayuso-Parrilla M. S., Parrilla R. Control of hepatic protein synthesis. Differential effects of ATP levels on the initiation and elongation steps. Eur J Biochem. 1975 Jul 15;55(3):593–599. doi: 10.1111/j.1432-1033.1975.tb02196.x. [DOI] [PubMed] [Google Scholar]
  2. BROWN E. G. CHANGES IN THE FREE NUCLEOTIDE PATTERN OF PEA SEEDS IN RELATION TO GERMINATION. Biochem J. 1965 May;95:509–514. doi: 10.1042/bj0950509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bomsel J. L., Pradet A. Study of adenosine 5'-mono-,di- and triphosphates in plant tissues. IV. Regulation of the level of nucleotides, in vivo, by adenylate kinase: theoretical and experimental study. Biochim Biophys Acta. 1968 Aug 20;162(2):230–242. doi: 10.1016/0005-2728(68)90105-9. [DOI] [PubMed] [Google Scholar]
  4. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  5. Chapman A. G., Fall L., Atkinson D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol. 1971 Dec;108(3):1072–1086. doi: 10.1128/jb.108.3.1072-1086.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ching T. M. Adenosine triphosphate content and seed vigor. Plant Physiol. 1973 Feb;51(2):400–402. doi: 10.1104/pp.51.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ching T. M. Temperature regulation of germination in crimson clover seeds. Plant Physiol. 1975 Dec;56(6):768–771. doi: 10.1104/pp.56.6.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Marcus A., Efron D., Weeks D. P. The wheat embryo cell-free system. Methods Enzymol. 1974;30:749–754. doi: 10.1016/0076-6879(74)30073-0. [DOI] [PubMed] [Google Scholar]
  9. Marcus A., Seal S. N., Weeks D. P. Protein chain initiation in wheat embryo. Methods Enzymol. 1974;30:94–101. doi: 10.1016/0076-6879(74)30013-4. [DOI] [PubMed] [Google Scholar]
  10. Moreland D. E., Hussey G. G., Shriner C. R., Farmer F. S. Adenosine Phosphates in Germinating Radish (Raphanus sativus L.) Seeds. Plant Physiol. 1974 Oct;54(4):560–563. doi: 10.1104/pp.54.4.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Obendorf R. L., Marcus A. Rapid Increase in Adenosine 5'-Triphosphate during Early Wheat Embryo Germination. Plant Physiol. 1974 May;53(5):779–781. doi: 10.1104/pp.53.5.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Price C. E., Murray A. W. Purine metabolism in germinating wheat embryos. Biochem J. 1969 Nov;115(2):129–133. doi: 10.1042/bj1150129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reyes P. PEI-cellulose thin-layer chromatography: a highly versatile system for separating purine and pyrimidine nucleotides from nucleosides and free bases. Anal Biochem. 1972 Nov;50(1):35–39. doi: 10.1016/0003-2697(72)90481-2. [DOI] [PubMed] [Google Scholar]
  14. Roberts B. E., Payne P. I., Osborne D. J. Protein synthesis and the viability of rye grains. Loss of activity of protein-synthesizing systems in vitro associated with a loss of viability. Biochem J. 1973 Feb;131(2):275–286. doi: 10.1042/bj1310275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. St John J. B. Determination of ATP in Chlorella with the luciferin-luciferase enzyme system. Anal Biochem. 1970 Oct;37(2):409–416. doi: 10.1016/0003-2697(70)90066-7. [DOI] [PubMed] [Google Scholar]
  16. Van Onckelen H. A., Verbeek R., Khan A. A. Relationship of ribonucleic Acid metabolism in embryo and aleurone to alpha-amylase synthesis in barley. Plant Physiol. 1974 Apr;53(4):562–568. doi: 10.1104/pp.53.4.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Walter T. J., Mans R. J. A rapid technique for the estimation of polynucleotide adenylyltransferase and ribonucleic Acid polymerase in plant tissues. Plant Physiol. 1975 Dec;56(6):821–825. doi: 10.1104/pp.56.6.821. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES