Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Jan;63(1):20–25. doi: 10.1104/pp.63.1.20

Functional Comparison of the Photosystem II Center-Antenna Complex of a Phycocyanin-less Mutant of Cyanidium caldarium with That of Chlorella pyrenoidosa1

Bruce A Diner a, Francis-André Wollman a
PMCID: PMC542758  PMID: 16660678

Abstract

The photosystem II (PSII) antenna of a phycocyanin-less mutant (III-C) of Cyanidium caldarium was studied by means of O2 activation and fluorescence induction measurements and compared to that of the green alga Chlorella pyrenoidosa.

In Cyanidium this antenna contains only about 40 (Chl) a molecules per center yet shows PSII energy transfer as efficient as in Chlorella with 240 Chl a + b per center. In Cyanidium, PSII energy transfer occurs among at least four centers which are located close to each other. Cyanidium and Chlorella show the same PSII action and low temperature emission spectra, in the Chl a region despite the gross differences in antenna size.

It is proposed that the PSII center-antenna complex found in Cyanidium is a core unit of the center-antenna complex of green algae; the only major difference between them is the addition of light-harvesting Chl a/b in the latter. It is further proposed that this core is the site of energy transfer between PSII centers.

Full text

PDF
21

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN M. B. Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol. 1959;32(3):270–277. doi: 10.1007/BF00409348. [DOI] [PubMed] [Google Scholar]
  2. Akoyunoglou G. Development of the photosystem II unit in plastids of bean leaves greened in periodic light. Arch Biochem Biophys. 1977 Oct;183(2):571–580. doi: 10.1016/0003-9861(77)90392-7. [DOI] [PubMed] [Google Scholar]
  3. Armond P. A., Staehelin L. A., Arntzen C. J. Spatial relationship of photosystem I, photosystem II, and the light-harvesting complex in chloroplast membranes. J Cell Biol. 1977 May;73(2):400–418. doi: 10.1083/jcb.73.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borisov A. Iu. Teoriia rezonansnoi migratsii énergii v pigmentnykh kompleksakh fotosinteziruiushchikh organizmov. Biofizika. 1967 Jul-Aug;12(4):630–636. [PubMed] [Google Scholar]
  5. Butler W. L., Strasser R. J. Tripartite model for the photochemical apparatus of green plant photosynthesis. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3382–3385. doi: 10.1073/pnas.74.8.3382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Diner B. A. Energy Transfer from the Phycobilisomes to Photosystem II Reaction Centers in Wild Type Cyanidium caldarium. Plant Physiol. 1979 Jan;63(1):30–34. doi: 10.1104/pp.63.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diner B. A., Wollman F. A. Biosynthesis of Photosystem II Reaction Centers, Antenna and Plastoquinone Pool in Greening Cells of Cyanidium caldarium Mutant III-C. Plant Physiol. 1979 Jan;63(1):26–29. doi: 10.1104/pp.63.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diner B., Mauzerall D. Photosynthetic oxygen production and the size of the photosynthetic unit in a cellfree preparation from cyanidium caldarium. Biochim Biophys Acta. 1973 Jan 18;292(1):285–290. doi: 10.1016/0005-2728(73)90273-9. [DOI] [PubMed] [Google Scholar]
  9. HAXO F. T., BLINKS L. R. Photosynthetic action spectra of marine algae. J Gen Physiol. 1950 Mar;33(4):389–422. doi: 10.1085/jgp.33.4.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. JOLIOT A., JOLIOT P. ETUDE CIN'ETIQUE DE LA R'EACTION PHOTOCHIMIQUE LIB'ERANT L'OXYG'ENE AU COURS DE LA PHOTOSYNTH'ESE. C R Hebd Seances Acad Sci. 1964 May 4;258:4622–4625. [PubMed] [Google Scholar]
  11. Joliot P., Bennoun P., Joliot A. New evidence supporting energy transfer between photosynthetic units. Biochim Biophys Acta. 1973 May 30;305(2):317–328. doi: 10.1016/0005-2728(73)90179-5. [DOI] [PubMed] [Google Scholar]
  12. Joliot P., Joliot A. A polarographic method for detection of oxygen production and reduction of hill reagent by isolated chloroplasts. Biochim Biophys Acta. 1968 Apr 2;153(3):625–634. doi: 10.1016/0005-2728(68)90190-4. [DOI] [PubMed] [Google Scholar]
  13. Joliot P. Kinetic studies of photosystem II in photosynthesis. Photochem Photobiol. 1968 Nov;8(5):451–463. doi: 10.1111/j.1751-1097.1968.tb05889.x. [DOI] [PubMed] [Google Scholar]
  14. Kok B., Forbush B., McGloin M. Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol. 1970 Jun;11(6):457–475. doi: 10.1111/j.1751-1097.1970.tb06017.x. [DOI] [PubMed] [Google Scholar]
  15. Ley A. C., Butler W. L. Efficiency of energy transfer from photosystem II to photosystem I in Porphyridium cruentum. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3957–3960. doi: 10.1073/pnas.73.11.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maison-Peteri B., Etienne A. L. Effects of sodium azide on photosystem II of Chlorella pyrenoidosa. Biochim Biophys Acta. 1977 Jan 6;459(1):10–19. doi: 10.1016/0005-2728(77)90003-2. [DOI] [PubMed] [Google Scholar]
  17. Miller K. R. A particle spanning the photosynthetic membrane. J Ultrastruct Res. 1976 Jan;54(1):159–167. doi: 10.1016/s0022-5320(76)80018-4. [DOI] [PubMed] [Google Scholar]
  18. NICHOLS K. E., BOGORAD L. Studies on phycobilin formation with mutants of Cyanidium caldarium. Nature. 1960 Dec 3;188:870–872. doi: 10.1038/188870b0. [DOI] [PubMed] [Google Scholar]
  19. Park R. B., Pfeifhofer A. O. Ultrastructural observations on deep-etched thylakoids. J Cell Sci. 1969 Jul;5(1):299–311. doi: 10.1242/jcs.5.1.299. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES