Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Apr;63(4):709–714. doi: 10.1104/pp.63.4.709

Plasmalemma Voltage Noise in Chara corallina1

Jack M Ferrier a, Claudine Morvan a,2, William J Lucas b, Jack Dainty c
PMCID: PMC542902  PMID: 16660797

Abstract

Voltage noise analysis is applied to plasmalemma ion transport in Chara corallina. There is a component in the noise power spectrum that is probably associated with current fluctuations within passive transport channels, and another component that may be associated either with fluctuations in the number of open channels, or with active transport. The data allow the calculation of time constants that may be attributable to molecular level events in these transport processes.

Full text

PDF
709

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. R., Stevens C. F. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol. 1973 Dec;235(3):655–691. doi: 10.1113/jphysiol.1973.sp010410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen Yi-der Fluctuations and noise in kinetic systems. III. Cycling steady-state models. J Theor Biol. 1975 Nov;55(1):229–243. doi: 10.1016/s0022-5193(75)80117-2. [DOI] [PubMed] [Google Scholar]
  3. Chen Y. D. Differentiation between equilibrium and nonequilibrium kinetic systems by noise analysis. Biophys J. 1978 Mar;21(3):279–285. doi: 10.1016/S0006-3495(78)85525-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen Y. D. Differentiation of channel models by noise analysis. Biophys J. 1976 Aug;16(8):965–971. doi: 10.1016/S0006-3495(76)85746-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conti F., De Felice L. J., Wanke E. Potassium and sodium ion current noise in the membrane of the squid giant axon. J Physiol. 1975 Jun;248(1):45–82. doi: 10.1113/jphysiol.1975.sp010962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Findlay G. P., Hope A. B., Pitman M. G., Smith F. A., Walker N. A. Ionic fluxes in cells of Chara corallina. Biochim Biophys Acta. 1969;183(3):565–576. doi: 10.1016/0005-2736(69)90170-9. [DOI] [PubMed] [Google Scholar]
  7. Fishman H. M. Relaxation spectra of potassium channel noise from squid axon membranes. Proc Natl Acad Sci U S A. 1973 Mar;70(3):876–879. doi: 10.1073/pnas.70.3.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lucas W. J., Ferrier J. M., Dainty J. Plasmalemma transport of OH- in Chara corallina: dynamics of activation and deactivation. J Membr Biol. 1977 Apr 7;32(1-2):49–73. doi: 10.1007/BF01905209. [DOI] [PubMed] [Google Scholar]
  9. Lucas W. J. HCO(3) Influx across the Plasmalemma of Chara corallina: Physiological and Biophysical Influence of 10 mm K. Plant Physiol. 1978 Apr;61(4):487–493. doi: 10.1104/pp.61.4.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sachs F., Lecar H. Acetylcholine noise in tissue culture muscle cells. Nat New Biol. 1973 Dec 19;246(155):214–216. doi: 10.1038/newbio246214a0. [DOI] [PubMed] [Google Scholar]
  11. Segal J. R. Electrical fluctuations associated with active transport. Biophys J. 1972 Nov;12(11):1371–1390. doi: 10.1016/S0006-3495(72)86169-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Spanswick R. M. Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K + , Na + , light and temperature on the membrane potential and resistance. Biochim Biophys Acta. 1972 Oct 23;288(1):73–89. doi: 10.1016/0005-2736(72)90224-6. [DOI] [PubMed] [Google Scholar]
  13. Stevens C. F. Inferences about membrane properties from electrical noise measurements. Biophys J. 1972 Aug;12(8):1028–1047. doi: 10.1016/S0006-3495(72)86141-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES