Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 May;63(5):952–955. doi: 10.1104/pp.63.5.952

Potassium and Phosphate Uptake in Corn Roots

Further Evidence for an Electrogenic H+/K+ Exchanger and an OH/Pi Antiporter 1

Willy Lin a
PMCID: PMC542950  PMID: 16660843

Abstract

Evidence is presented that K+ uptake in corn root segments is coupled to an electrogenic H+/K+ -exchanging plasmalemma ATPase while phosphate uptake is coupled to an OH/Pi antiporter. The plasmalemma ATPase inhibitor, diethylstilbestrol, or the stimulator, fusicoccin, altered K+ uptake directly and phosphate uptake indirectly. On the other hand, mersalyl, an OH/Pi antiporter inhibitor, inhibited phosphate uptake instantly but only slightly affected K+ uptake. Collapse of the proton gradient across the membrane by (p-trifluoromethoxy) carbonyl cyanide phenylhydrazone resulted in immediate inhibition of K+ uptake but only later inhibited phosphate uptake. Changing the pH of the absorption solution had opposite effects on K+ and phosphate uptake. In addition, a 4-hour washing of corn root tissue induced a 5-fold increase in the rate of K+ uptake with little or no lag, but only a 2- to 3-fold increase in phosphate uptake with a 30- to 45-minute lag. Collectively these differences strongly support the coupling of an electrogenic H+/K+ -exchanging ATPase to an OH/Pi antiporter in corn root tissue.

Full text

PDF
953

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Day D. A., Hanson J. B. Effect of phosphate and uncouplers on substrate transport and oxidation by isolated corn mitochondria. Plant Physiol. 1977 Feb;59(2):139–144. doi: 10.1104/pp.59.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Frick H., Nicholson R. L., Hodges T. K., Bauman L. F. Influence of Helminthosporium maydis, Race T, Toxin on Potassium Uptake in Maize Roots. Plant Physiol. 1976 Feb;57(2):171–174. doi: 10.1104/pp.57.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Giaquinta R. Phloem Loading of Sucrose: pH Dependence and Selectivity. Plant Physiol. 1977 Apr;59(4):750–755. doi: 10.1104/pp.59.4.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hanson J. B., Bertagnolli B. L., Shepherd W. D. Phosphate-induced Stimulation of Acceptorless Respiration in Corn Mitochondria. Plant Physiol. 1972 Sep;50(3):347–354. doi: 10.1104/pp.50.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Leonard R. T., Hanson J. B. Induction and development of increased ion absorption in corn root tissue. Plant Physiol. 1972 Mar;49(3):430–435. doi: 10.1104/pp.49.3.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Leonard R. T., Hodges T. K. Characterization of Plasma Membrane-associated Adenosine Triphosphase Activity of Oat Roots. Plant Physiol. 1973 Jul;52(1):6–12. doi: 10.1104/pp.52.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lin W., Hanson J. B. Cell potentials, cell resistance, and proton fluxes in corn root tissue: effects of dithioerythritol. Plant Physiol. 1976 Sep;58(3):276–282. doi: 10.1104/pp.58.3.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lin W., Hanson J. B. Increase in electrogenic membrane potential with washing of corn root tissue. Plant Physiol. 1974 Nov;54(5):799–801. doi: 10.1104/pp.54.5.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lin W., Hanson J. B. Phosphate absorption rates and adenosine 5'-triphosphate concentrations in corn root tissue. Plant Physiol. 1974 Sep;54(3):250–256. doi: 10.1104/pp.54.3.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Parrondo R. T., Smith R. C. Effect of removal of the root tip on the development of enhanced rb absorption by corn roots. Plant Physiol. 1976 Apr;57(4):607–611. doi: 10.1104/pp.57.4.607. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES