Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Jun;63(6):1205–1209. doi: 10.1104/pp.63.6.1205

Influence of Light and Ambient Carbon Dioxide Concentration on Nitrate Assimilation by Intact Barley Seedlings 1

Muhammad Aslam a, Ray C Huffaker a, D William Rains a, K Prasad Rao a
PMCID: PMC542996  PMID: 16660883

Abstract

The influence of light, dark, and ambient CO2 on nitrate assimilation in 8- to 9-day-old barley seedlings was studied. To develop the photosynthetic apparatus fully, the seedlings were grown in nitrogen-free Hoagland solution for 5 days in darkness followed by 3 days in continuous light.

The seedlings reduced nitrate and nitrite in both light and dark, although more slowly in darkness. The slower nitrate reduction in darkness was not due to decreased uptake, since the steady-state internal concentration of nitrate was doubled. The faster nitrate reduction in light was attributed to recent products of photosynthetic CO2 fixation supplying reducing energy, possibly by shuttle reactions between chloroplasts and cytoplasm. In carbohydrate-deficient tissue, it appeared that recently fixed photosynthate could supply all of the energy required for nitrate reduction. When sufficient metabolites were present in the green tissue, light was not obligatory for the reduction of nitrate and nitrite.

Full text

PDF
1208

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aslam M., Huffaker R. C., Travis R. L. The interaction of respiration and photosynthesis in induction of nitrate reductase activity. Plant Physiol. 1973 Aug;52(2):137–141. doi: 10.1104/pp.52.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aslam M., Oaks A., Huffaker R. C. Effect of light and glucose on the induction of nitrate reductase and on the distribution of nitrate in etiolated barley leaves. Plant Physiol. 1976 Oct;58(4):588–591. doi: 10.1104/pp.58.4.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beevers L., Hageman R. H. The role of light in nitrate metabolism in higher plants. Photophysiology. 1972;(7):85–113. [PubMed] [Google Scholar]
  4. Chantarotwong W., Huffaker R. C., Miller B. L., Granstedt R. C. In vivo nitrate reduction in relation to nitrate uptake, nitrate content, and in vitro nitrate reductase activity in intact barley seedlings. Plant Physiol. 1976 Apr;57(4):519–522. doi: 10.1104/pp.57.4.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dalling M. J., Tolbert N. E., Hageman R. H. Intracellular location of nitrate reductase and nitrite reductase. II. Wheat roots. Biochim Biophys Acta. 1972 Dec 14;283(3):513–519. doi: 10.1016/0005-2728(72)90267-8. [DOI] [PubMed] [Google Scholar]
  6. Huffaker R. C., Obendorf R. L., Keller C. J., Kleinkopf G. E. Effects of Light Intensity on Photosynthetic Carboxylative Phase Enzymes and Chlorophyll Synthesis in Greening Leaves of Hordeum vulgare L. Plant Physiol. 1966 Jun;41(6):913–918. doi: 10.1104/pp.41.6.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jolly S. O., Tolbert N. E. NADH-Nitrate Reductase Inhibitor from Soybean Leaves. Plant Physiol. 1978 Aug;62(2):197–203. doi: 10.1104/pp.62.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klepper L., Flesher D., Hageman R. H. Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves. Plant Physiol. 1971 Nov;48(5):580–590. doi: 10.1104/pp.48.5.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neyra C. A., Hageman R. H. Dependence of nitrite reduction on electron transport chloroplasts. Plant Physiol. 1974 Oct;54(4):480–483. doi: 10.1104/pp.54.4.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Neyra C. A., Hageman R. H. Relationships between Carbon Dioxide, Malate, and Nitrate Accumulation and Reduction in Corn (Zea mays L.) Seedlings. Plant Physiol. 1976 Dec;58(6):726–730. doi: 10.1104/pp.58.6.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sawhney S. K., Naik M. S., Nicholas D. J. Regulation of NADH supply for nitrate reduction in green plants via photosynthesis and mitochondrial respiration. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1209–1216. doi: 10.1016/0006-291x(78)91265-2. [DOI] [PubMed] [Google Scholar]
  12. Schrader L. E., Ritenour G. L., Eilrich G. L., Hageman R. H. Some characteristics of nitrate reductase from higher plants. Plant Physiol. 1968 Jun;43(6):930–940. doi: 10.1104/pp.43.6.930. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES