Abstract
The analogs of rhizobitoxine, aminoethoxyvinylglycine (AVG) (l-2-amino-4-2′-aminoethoxy-trans-3 butenoic acid) and methoxyvinylglycine (MVG) (l-2-amino-4-methoxy-trans-3-butenoic acid), that are potent inhibitors of ethylene biosynthesis at 0.1 millimolar also inhibited protein synthesis and charging of tRNA especially at 1 millimolar and higher concentrations. The saturated analog of MVG inhibited ethylene synthesis while the saturated analog of AVG did not. Both saturated AVG and MVG inhibit methionyl- and leucyl-amino acyl-tRNA synthetase. Because of the inhibition of amino acid metabolism in plant tissues by these rhizobitoxine analogs caution is advised in interpreting the results obtained with concentrations of compounds above 0.1 millimolar.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. D. Adenylate metabolism of embryonic axes from deteriorated soybean seeds. Plant Physiol. 1977 Apr;59(4):610–614. doi: 10.1104/pp.59.4.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
- Chalutz E., Lieberman M. Methionine-induced Ethylene Production by Penicillium digitatum. Plant Physiol. 1977 Sep;60(3):402–406. doi: 10.1104/pp.60.3.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giovanelli J., Owens L. D., Mudd S. H. Mechanism of inhibition of spinach beta-cystathionase by rhizobitoxine. Biochim Biophys Acta. 1971 Mar 10;227(3):671–684. doi: 10.1016/0005-2744(71)90016-7. [DOI] [PubMed] [Google Scholar]
- Kelmers A. D., Novelli G. D., Stulberg M. P. Separation of transfer ribonucleic acids by reverse phase chromatography. J Biol Chem. 1965 Oct;240(10):3979–3983. [PubMed] [Google Scholar]
- Mattoo A. K., Lieberman M. Localization of the Ethylene-synthesizing System in Apple Tissue. Plant Physiol. 1977 Nov;60(5):794–799. doi: 10.1104/pp.60.5.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owens L. D., Lieberman M., Kunishi A. Inhibition of ethylene production by rhizobitoxine. Plant Physiol. 1971 Jul;48(1):1–4. doi: 10.1104/pp.48.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owens L. D., Wright D. A. Rhizobial-Induced Chlorosis in Soybeans: Isolation, Production in Nodules, and Varietal Specificity of the Toxin. Plant Physiol. 1965 Sep;40(5):927–930. doi: 10.1104/pp.40.5.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pruess D. L., Scannell J. P., Kellett M., Ax H. A., Janecek J., Williams T. H., Stempel A., Berger J. Antimetabolites produced by microorganisms. X. L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid. J Antibiot (Tokyo) 1974 Apr;27(4):229–233. doi: 10.7164/antibiotics.27.229. [DOI] [PubMed] [Google Scholar]
- Rando R. R. Beta, gamma unsaturated amino acids as irreversible enzyme inhibitors. Nature. 1974 Aug 16;250(467):586–587. doi: 10.1038/250586a0. [DOI] [PubMed] [Google Scholar]
- Scannel J. P., Pruess D. L., Demny T. C., Sello L. H., Williams T. Antimetabolites produced by microorganisms. V. L-2-amino-4-methoxy-trans-3-butenoic acid. J Antibiot (Tokyo) 1972 Feb;25(2):122–127. doi: 10.7164/antibiotics.25.122. [DOI] [PubMed] [Google Scholar]
- Zimmerman R. H., Lieberman M., Broome O. C. Inhibitory effect of a rhizobitoxine analog on bud growth after release from dormancy. Plant Physiol. 1977 Feb;59(2):158–160. doi: 10.1104/pp.59.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]