Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Sep;64(3):374–378. doi: 10.1104/pp.64.3.374

Rubidium (Potassium) Uptake by Arabidopsis

A Comparison of Uptake by Cells in Suspension Culture and by Roots of Intact Seedlings 1

L David Polley a, Johns W Hopkins a
PMCID: PMC543094  PMID: 16660969

Abstract

Experiments are reported in which the uptake of 86Rb+, used as an analog of K+, into cultured cells of Arabidopsis thaliana is investigated. A single transport system is found with Km = 0.34 millimolar and Vmax = 14 nmoles per milligram of protein per hour. This system is blocked by the metabolic inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and by cold. At high concentrations of external K+ (above 1 millimolar), a significant fraction of total uptake is energy-independent. No evidence is found for more than one energy-dependent uptake system or for concentration-dependent modifications of a carrier as postulated in multiphasic transport models.

Rb+ uptake was also examined in cultured cells derived from an “osmotic mutant” of Arabidopsis. The system closely resembles that found in wild type cells with the exception that the Michaelis-Menten constants are higher: Km = 1 millimolar and Vmax = 32 nanomoles per milligram of protein per hour.

The possibility that these results are artifacts associated with use of cultured cells was checked by examining 86Rb+ uptake by roots of intact seedlings of wild type Arabidopsis. A single energy-dependent transport system is found with Km = 0.42 millimolar which is not significantly different from the Km of cultured cells. There is also energy-independent uptake at high external ion concentration.

Full text

PDF
374

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Emerson C. P., Jr, Humphreys T. A simple and sensitive method for quantitative measurement of cellular RNA synthesis. Anal Biochem. 1971 Apr;40(2):254–266. doi: 10.1016/0003-2697(71)90384-8. [DOI] [PubMed] [Google Scholar]
  2. Epstein E., Rains D. W., Elzam O. E. RESOLUTION OF DUAL MECHANISMS OF POTASSIUM ABSORPTION BY BARLEY ROOTS. Proc Natl Acad Sci U S A. 1963 May;49(5):684–692. doi: 10.1073/pnas.49.5.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Epstein W., Kim B. S. Potassium transport loci in Escherichia coli K-12. J Bacteriol. 1971 Nov;108(2):639–644. doi: 10.1128/jb.108.2.639-644.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Glass A. D. Regulation of potassium absorption in barley roots: an allosteric model. Plant Physiol. 1976 Jul;58(1):33–37. doi: 10.1104/pp.58.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Glass A. The regulation of potassium absorption in barley roots. Plant Physiol. 1975 Sep;56(3):377–380. doi: 10.1104/pp.56.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rhoads D. B., Woo A., Epstein W. Discrimination between Rb+ and K+ by Escherichia coli. Biochim Biophys Acta. 1977 Aug 15;469(1):45–51. doi: 10.1016/0005-2736(77)90324-8. [DOI] [PubMed] [Google Scholar]
  7. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES