Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jul;87(14):5425–5429. doi: 10.1073/pnas.87.14.5425

Cytochrome b5 potentiation of cytochrome P-450 catalytic activity demonstrated by a vaccinia virus-mediated in situ reconstitution system.

T Aoyama 1, K Nagata 1, Y Yamazoe 1, R Kato 1, E Matsunaga 1, H V Gelboin 1, F J Gonzalez 1
PMCID: PMC54337  PMID: 2115170

Abstract

A cDNA containing the full coding region of human cytochrome b5 was inserted into a vaccinia virus cDNA expression vector. Infection of human thymidine kinase-minus (TK-) 143 cells in culture with this recombinant virus resulted in production of 0.3 nmol of cytochrome b5 per mg of cell lysate protein. The expressed cytochrome had a reduced difference spectrum with a Soret peak at 424 nm, typical of pure cytochrome b5. TK- 143 cells have little detectable endogenous cytochrome b5, cytochrome P-450 (P450), and NADPH-P450 oxidoreductase. To test whether cytochrome b5 potentiated mixed-function monooxygenation in situ, these cells were coinfected with three recombinant vaccinia viruses individually carrying cDNAs encoding cytochrome b5, NADPH-P450 oxidoreductase, and P450 form IIB1. These triple-virus-infected cells were compared to cells infected with the P450IIB1 and NADPH-P450 oxidoreductase recombinant viruses with respect to P450IIB1-catalyzed monooxygenase activities. Cytochrome b5 specifically augmented the deethylation of p-nitrophenetole in microsomal membrane fractions of infected cells or when substrate was incubated directly with cells in situ. No significant increases were seen with P450IIB1-catalyzed testosterone, 7-ethoxycoumarin, or 7-pentoxyresorufin oxidations. These data demonstrate that cytochrome b5 is capable of specifically augmenting monooxygenase activities in intact cells.

Full text

PDF
5426

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoyama T., Korzekwa K., Nagata K., Adesnik M., Reiss A., Lapenson D. P., Gillette J., Gelboin H. V., Waxman D. J., Gonzalez F. J. Sequence requirements for cytochrome P-450IIB1 catalytic activity. Alteration of the stereospecificity and regioselectivity of steroid hydroxylation by a simultaneous change of two hydrophobic amino acid residues to phenylalanine. J Biol Chem. 1989 Dec 15;264(35):21327–21333. [PubMed] [Google Scholar]
  2. Chakrabarti S., Brechling K., Moss B. Vaccinia virus expression vector: coexpression of beta-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol. 1985 Dec;5(12):3403–3409. doi: 10.1128/mcb.5.12.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christou M., Mitchell M. J., Jovanovich M. C., Wilson N. M., Jefcoate C. R. Selective potent restriction of P450b- but not P450e-dependent 7,12-dimethylbenz[a]anthracene metabolism by the microsomal environment. Arch Biochem Biophys. 1989 Apr;270(1):162–172. doi: 10.1016/0003-9861(89)90018-0. [DOI] [PubMed] [Google Scholar]
  4. Fukushima H., Grinstead G. F., Gaylor J. L. Total enzymic synthesis of cholesterol from lanosterol. Cytochrome b5-dependence of 4-methyl sterol oxidase. J Biol Chem. 1981 May 25;256(10):4822–4826. [PubMed] [Google Scholar]
  5. Gorsky L. D., Coon M. J. Effects of conditions for reconstitution with cytochrome b5 on the formation of products in cytochrome P-450-catalyzed reactions. Drug Metab Dispos. 1986 Jan-Feb;14(1):89–96. [PubMed] [Google Scholar]
  6. Greenlee W. F., Poland A. An improved assay of 7-ethoxycoumarin O-deethylase activity: induction of hepatic enzyme activity in C57BL/6J and DBA/2J mice by phenobarbital, 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Pharmacol Exp Ther. 1978 Jun;205(3):596–605. [PubMed] [Google Scholar]
  7. Gruenke L. D., Konopka K., Koop D. R., Waskell L. A. Characterization of halothane oxidation by hepatic microsomes and purified cytochromes P-450 using a gas chromatographic mass spectrometric assay. J Pharmacol Exp Ther. 1988 Aug;246(2):454–459. [PubMed] [Google Scholar]
  8. Guengerich F. P., Dannan G. A., Wright S. T., Martin M. V., Kaminsky L. S. Purification and characterization of liver microsomal cytochromes p-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta-naphthoflavone. Biochemistry. 1982 Nov 9;21(23):6019–6030. doi: 10.1021/bi00266a045. [DOI] [PubMed] [Google Scholar]
  9. Gunsalus I. C., Sligar S. G. Oxygen reduction by the P450 monoxygenase systems. Adv Enzymol Relat Areas Mol Biol. 1978;47:1–44. doi: 10.1002/9780470122921.ch1. [DOI] [PubMed] [Google Scholar]
  10. Hildebrandt A., Estabrook R. W. Evidence for the participation of cytochrome b 5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys. 1971 Mar;143(1):66–79. doi: 10.1016/0003-9861(71)90186-x. [DOI] [PubMed] [Google Scholar]
  11. Hrycay E. G., Estabrook R. W. The effect of extra bound cytochrome b-5 on cytochrome P-450-dependent enzyme activities in liver microsomes. Biochem Biophys Res Commun. 1974 Sep 23;60(2):771–778. doi: 10.1016/0006-291x(74)90307-6. [DOI] [PubMed] [Google Scholar]
  12. Imai Y. The roles of cytochrome b5 in reconstituted monooxygenase systems containing various forms of hepatic microsomal cytochrome P-450. J Biochem. 1981 Feb;89(2):351–362. doi: 10.1093/oxfordjournals.jbchem.a133209. [DOI] [PubMed] [Google Scholar]
  13. Ingelman-Sundberg M., Johansson I. Cytochrome b5 as electron donor to rabbit liver cytochrome P-450LM2 in reconstituted phospholipid vesicles. Biochem Biophys Res Commun. 1980 Nov 28;97(2):582–586. doi: 10.1016/0006-291x(80)90303-4. [DOI] [PubMed] [Google Scholar]
  14. Jansson I., Schenkman J. B. Evidence against participation of cytochrome b5 in the hepatic microsomal mixed-function oxidase reaction. Mol Pharmacol. 1973 Nov;9(6):840–845. [PubMed] [Google Scholar]
  15. Jansson I., Schenkman J. B. Influence of cytochrome b5 on the stoichiometry of the different oxidative reactions catalyzed by liver microsomal cytochrome P-450. Drug Metab Dispos. 1987 May-Jun;15(3):344–348. [PubMed] [Google Scholar]
  16. Jansson I., Tamburini P. P., Favreau L. V., Schenkman J. B. The interaction of cytochrome b5 with four cytochrome P-450 enzymes from the untreated rat. Drug Metab Dispos. 1985 Jul-Aug;13(4):453–458. [PubMed] [Google Scholar]
  17. Kaminsky L. S., Guengerich F. P. Cytochrome P-450 isozyme/isozyme functional interactions and NADPH-cytochrome P-450 reductase concentrations as factors in microsomal metabolism of warfarin. Eur J Biochem. 1985 Jun 18;149(3):479–489. doi: 10.1111/j.1432-1033.1985.tb08950.x. [DOI] [PubMed] [Google Scholar]
  18. Keyes S. R., Alfano J. A., Jansson I., Cinti D. L. Rat liver microsomal elongation of fatty acids. Possible involvement of cytochrome b5. J Biol Chem. 1979 Aug 25;254(16):7778–7784. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lipka J. J., Waskell L. A. Methoxyflurane acts at the substrate binding site of cytochrome P450 LM2 to induce a dependence on cytochrome b5. Arch Biochem Biophys. 1989 Jan;268(1):152–160. doi: 10.1016/0003-9861(89)90576-6. [DOI] [PubMed] [Google Scholar]
  21. Lu A. Y., Levin W., Selander H., Jerina D. M. Liver microsomal electron transport systems. III. The involvement of cytochrome b5 in the NADPH-supported cytochrome P-450-dependent hydroxylation of chlorobenzene. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1348–1355. doi: 10.1016/s0006-291x(74)80432-8. [DOI] [PubMed] [Google Scholar]
  22. Mackett M., Smith G. L., Moss B. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J Virol. 1984 Mar;49(3):857–864. doi: 10.1128/jvi.49.3.857-864.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miyata M., Nagata K., Yamazoe Y., Kato R. Isolation and characterization of human liver cytochrome b5 cDNA. Pharmacol Res. 1989 Sep-Oct;21(5):513–520. doi: 10.1016/1043-6618(89)90193-x. [DOI] [PubMed] [Google Scholar]
  24. Noshiro M., Harada N., Omura T. Immunochemical study on the route of electron transfer from NADH and NADPH to cytochrome P-450 of liver microsomes. J Biochem. 1980 Nov;88(5):1521–1535. doi: 10.1093/oxfordjournals.jbchem.a133123. [DOI] [PubMed] [Google Scholar]
  25. Noshiro M., Ullrich V., Omura T. Cytochrome b5 as electron donor for oxy-cytochrome P-450. Eur J Biochem. 1981 Jun 1;116(3):521–526. doi: 10.1111/j.1432-1033.1981.tb05367.x. [DOI] [PubMed] [Google Scholar]
  26. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  27. Patten C. J., Ning S. M., Lu A. Y., Yang C. S. Acetone-inducible cytochrome P-450: purification, catalytic activity, and interaction with cytochrome b5. Arch Biochem Biophys. 1986 Dec;251(2):629–638. doi: 10.1016/0003-9861(86)90373-5. [DOI] [PubMed] [Google Scholar]
  28. Pompon D., Coon M. J. On the mechanism of action of cytochrome P-450. Oxidation and reduction of the ferrous dioxygen complex of liver microsomal cytochrome P-450 by cytochrome b5. J Biol Chem. 1984 Dec 25;259(24):15377–15385. [PubMed] [Google Scholar]
  29. Ryan D. E., Levin W. Purification and characterization of hepatic microsomal cytochrome P-450. Pharmacol Ther. 1990;45(2):153–239. doi: 10.1016/0163-7258(90)90029-2. [DOI] [PubMed] [Google Scholar]
  30. Sasame H. A., Thorgeirsson S. S., Mitchell J. R., Gillette J. R. The possible involvement of cytochrome b5 in the oxidation of lauric acid by microsomes from kidney cortex and liver of rats. Life Sci. 1974 Jan 1;14(1):35–46. doi: 10.1016/0024-3205(74)90243-4. [DOI] [PubMed] [Google Scholar]
  31. Shigematsu H., Yamano S., Yoshimura H. NADH-dependent O-deethylation of p-nitrophenetole with rabbit liver microsomes. Arch Biochem Biophys. 1976 Mar;173(1):178–186. doi: 10.1016/0003-9861(76)90248-4. [DOI] [PubMed] [Google Scholar]
  32. Spatz L., Strittmatter P. A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc Natl Acad Sci U S A. 1971 May;68(5):1042–1046. doi: 10.1073/pnas.68.5.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tamura S., Kawata S., Sugiyama T., Tarui S. Modulation of the reductive metabolism of halothane by microsomal cytochrome b5 in rat liver. Biochim Biophys Acta. 1987 Dec 7;926(3):231–238. doi: 10.1016/0304-4165(87)90208-x. [DOI] [PubMed] [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. White R. E., Coon M. J. Oxygen activation by cytochrome P-450. Annu Rev Biochem. 1980;49:315–356. doi: 10.1146/annurev.bi.49.070180.001531. [DOI] [PubMed] [Google Scholar]
  36. Wood A. W., Ryan D. E., Thomas P. E., Levin W. Regio- and stereoselective metabolism of two C19 steroids by five highly purified and reconstituted rat hepatic cytochrome P-450 isozymes. J Biol Chem. 1983 Jul 25;258(14):8839–8847. [PubMed] [Google Scholar]
  37. Yamano S., Aoyama T., McBride O. W., Hardwick J. P., Gelboin H. V., Gonzalez F. J. Human NADPH-P450 oxidoreductase: complementary DNA cloning, sequence and vaccinia virus-mediated expression and localization of the CYPOR gene to chromosome 7. Mol Pharmacol. 1989 Jul;36(1):83–88. [PubMed] [Google Scholar]
  38. Yamazoe Y., Murayama N., Shimada M., Yamauchi K., Nagata K., Imaoka S., Funae Y., Kato R. A sex-specific form of cytochrome P-450 catalyzing propoxycoumarin O-depropylation and its identity with testosterone 6 beta-hydroxylase in untreated rat livers: reconstitution of the activity with microsomal lipids. J Biochem. 1988 Nov;104(5):785–790. doi: 10.1093/oxfordjournals.jbchem.a122550. [DOI] [PubMed] [Google Scholar]
  39. Yasukochi Y., Masters B. S. Some properties of a detergent-solubilized NADPH-cytochrome c(cytochrome P-450) reductase purified by biospecific affinity chromatography. J Biol Chem. 1976 Sep 10;251(17):5337–5344. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES