Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Nov;87(21):8637–8641. doi: 10.1073/pnas.87.21.8637

Streamlined approach to creating yeast artificial chromosome libraries from specialized cell sources.

J M Feingold 1, S D Ogden 1, C T Denny 1
PMCID: PMC55012  PMID: 2236075

Abstract

The study of tumor-specific chromosomal abnormalities has been severely impeded by an inability to link cytogenetic to molecular data. Restriction fragment length polymorphism mapping of any particular chromosomal rearrangement to the resolution limit of genetic methodology generates sets of probes that frequently are still too widely spaced to render the rearrangement breakpoints accessible to molecular isolation. The stable propagation of genomic fragments of up to one million base pairs in size as yeast artificial chromosomes (YACs) represents an important development in this regard. However, existing YAC libraries have been made from karyotypically normal sources making the localization and cloning of specific rearrangement breakpoints much more difficult. As a solution to this problem, we present an improved method for creating YAC libraries that can utilize specialized tumor-derived materials and that can be executed effectively in a small laboratory setting. Procedures that enabled more consistent DNA insert size selection and enhanced yeast transformation frequency were employed to generate a human YAC library from a neuroepithelioma cell line containing a characteristic t(11;22) chromosomal translocation. Approximately 40,000 colonies with an average insert size of 330 kilobase pairs were created. This library was screened with two single-copy probes that bracket the translocation breakpoint. YAC clones ranging from 370 to 550 kilobase pairs that were specific for each single-copy probe were identified. Specialized YAC libraries will make many more tumor-specific chromosomal abnormalities accessible to molecular isolation.

Full text

PDF
8637

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertsen H. M., Abderrahim H., Cann H. M., Dausset J., Le Paslier D., Cohen D. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4256–4260. doi: 10.1073/pnas.87.11.4256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albertsen H. M., Le Paslier D., Abderrahim H., Dausset J., Cann H., Cohen D. Improved control of partial DNA restriction enzyme digest in agarose using limiting concentrations of Mg++. Nucleic Acids Res. 1989 Jan 25;17(2):808–808. doi: 10.1093/nar/17.2.808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brownstein B. H., Silverman G. A., Little R. D., Burke D. T., Korsmeyer S. J., Schlessinger D., Olson M. V. Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science. 1989 Jun 16;244(4910):1348–1351. doi: 10.1126/science.2544027. [DOI] [PubMed] [Google Scholar]
  4. Burgers P. M., Percival K. J. Transformation of yeast spheroplasts without cell fusion. Anal Biochem. 1987 Jun;163(2):391–397. doi: 10.1016/0003-2697(87)90240-5. [DOI] [PubMed] [Google Scholar]
  5. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  6. Clarke L., Carbon J. A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell. 1976 Sep;9(1):91–99. doi: 10.1016/0092-8674(76)90055-6. [DOI] [PubMed] [Google Scholar]
  7. Coulson A., Waterston R., Kiff J., Sulston J., Kohara Y. Genome linking with yeast artificial chromosomes. Nature. 1988 Sep 8;335(6186):184–186. doi: 10.1038/335184a0. [DOI] [PubMed] [Google Scholar]
  8. Croce C. M. Role of chromosome translocations in human neoplasia. Cell. 1987 Apr 24;49(2):155–156. doi: 10.1016/0092-8674(87)90552-6. [DOI] [PubMed] [Google Scholar]
  9. Garza D., Ajioka J. W., Burke D. T., Hartl D. L. Mapping the Drosophila genome with yeast artificial chromosomes. Science. 1989 Nov 3;246(4930):641–646. doi: 10.1126/science.2510296. [DOI] [PubMed] [Google Scholar]
  10. Green E. D., Olson M. V. Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1213–1217. doi: 10.1073/pnas.87.3.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hieter P., Mann C., Snyder M., Davis R. W. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell. 1985 Feb;40(2):381–392. doi: 10.1016/0092-8674(85)90152-7. [DOI] [PubMed] [Google Scholar]
  12. Leder P., Battey J., Lenoir G., Moulding C., Murphy W., Potter H., Stewart T., Taub R. Translocations among antibody genes in human cancer. Science. 1983 Nov 18;222(4625):765–771. doi: 10.1126/science.6356357. [DOI] [PubMed] [Google Scholar]
  13. Little R. D., Porta G., Carle G. F., Schlessinger D., D'Urso M. Yeast artificial chromosomes with 200- to 800-kilobase inserts of human DNA containing HLA, V kappa, 5S, and Xq24-Xq28 sequences. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1598–1602. doi: 10.1073/pnas.86.5.1598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McCormick M. K., Shero J. H., Cheung M. C., Kan Y. W., Hieter P. A., Antonarakis S. E. Construction of human chromosome 21-specific yeast artificial chromosomes. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9991–9995. doi: 10.1073/pnas.86.24.9991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Traver C. N., Klapholz S., Hyman R. W., Davis R. W. Rapid screening of a human genomic library in yeast artificial chromosomes for single-copy sequences. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5898–5902. doi: 10.1073/pnas.86.15.5898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Whang-Peng J., Triche T. J., Knutsen T., Miser J., Kao-Shan S., Tsai S., Israel M. A. Cytogenetic characterization of selected small round cell tumors of childhood. Cancer Genet Cytogenet. 1986 Apr 1;21(3):185–208. doi: 10.1016/0165-4608(86)90001-4. [DOI] [PubMed] [Google Scholar]
  17. Zhang F. R., Delattre O., Rouleau G., Couturier J., Lefrançois, Thomas G., Aurias A. The neuroepithelioma breakpoint on chromosome 22 is proximal to the meningioma locus. Genomics. 1990 Jan;6(1):174–177. doi: 10.1016/0888-7543(90)90463-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES