Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1966 Oct;41(8):1293–1300. doi: 10.1104/pp.41.8.1293

Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi. III. Light-Induced Absorbance Changes in Chloroplast Fragments of the Wild Type and Mutant Strains 1

R P Levine 1, Donald S Gorman 1,2
PMCID: PMC550521  PMID: 5978547

Abstract

Light-induced absorbance changes were investigated in chloroplast fragments of wild type Chlamydomonas reinhardi and 5 different mutant strains having impaired photosynthesis. Two absorbance changes were detected, 1 having a maximum at 553 nm and the other at 559 nm. The component exhibiting the 553 nm change is a cytochrome similar to cytochrome f from higher plant chloroplasts. The component exhibiting the 559 nm change has the properties of a cytochrome similar to cytochrome b3. Two of the mutant strains (ac-115 and ac-141) were found to lack the 559 cytochrome and light induced only the oxidation of the 553 cytochrome. A third mutant strain (ac-206), previously shown to lack the 553 cytochrome, exhibited only the light-induced reduction of the 559 cytochrome. A fourth mutant strain (ac-208), shown to lack plastocyanin, exhibited absorbance changes attributable to both cytochromes. However, light was capable of inducing the reduction of the 559 cytochrome but not its oxidation. On the other hand, light induced the oxidation of the 553 cytochrome but not its reduction.

These observations are discussed in terms of the series formulation for photosynthetic electron transport in which the 559 cytochrome is reduced by system II and transfers electrons via the component affected in ac-21 to the 553 cytochrome. Accordingly, system I sensitizes the oxidation of the 3 components of the electron transport chain.

Full text

PDF
1295

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAVENPORT H. E., HILL R. The preparation and some properties of cytochrome f. Proc R Soc Lond B Biol Sci. 1952 Apr 24;139(896):327–345. doi: 10.1098/rspb.1952.0016. [DOI] [PubMed] [Google Scholar]
  3. DUYSENS L. N., AMESZ J., KAMP B. M. Two photochemical systems in photosynthesis. Nature. 1961 May 6;190:510–511. doi: 10.1038/190510a0. [DOI] [PubMed] [Google Scholar]
  4. Gorman D. S., Levine R. P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1665–1669. doi: 10.1073/pnas.54.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LEVINE R. P., SMILLIE R. M. THE PHOTOSYNTHETIC ELECTRON TRANSPORT CHAIN OF CHLAMYDOMONAS REINHARDI. I. TRIPHOSPHOPYRIDINE NUCLEOTIDE PHOTOREDUCTION IN WILD-TYPE AND MUTANT STRAINS. J Biol Chem. 1963 Dec;238:4052–4057. [PubMed] [Google Scholar]
  6. PERINI F., KAMEN M. D., SCHIFF J. A. IRON-CONTAINING PROTEINS IN EUGLENA. I. DETECTION AND CHARACTERIZATION. Biochim Biophys Acta. 1964 Jul 29;88:74–90. doi: 10.1016/0926-6577(64)90155-x. [DOI] [PubMed] [Google Scholar]
  7. SMILLIE R. M., LEVINE R. P. THE PHOTOSYNTHETIC ELECTRON TRANSPORT CHAIN OF CHLAMYDOMONAS REINHARDI. II. COMPONENTS OF THE TRIPHOSPHOPYRIDINE NUCLEOTIDE-REDUCTIVE PATHWAY IN WILD-TYPE AND MUTANT STRAINS. J Biol Chem. 1963 Dec;238:4058–4062. [PubMed] [Google Scholar]
  8. VERNON L. P., AVRON M. PHOTOSYNTHESIS. Annu Rev Biochem. 1965;34:269–296. doi: 10.1146/annurev.bi.34.070165.001413. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES