Abstract
Although root pressure and guttation presumably result from a high concentration of salt in the root xylem, the guttation fluid is very dilute. Measurements of the osmotic potential of the guttation liquid and of exudates at various levels in guttating plants indicate that salt is removed from the xylem in the upper part of plants, particularly in the leaves. The concentration of salt solutions forced through individual leaves by an artificial root pressure has no influence on the osmotic potential of the guttation fluid. This suggests that leaves play an important role in removing salt from the xylem of guttating plants.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrs H. D. Root pressure and leaf water potential. Science. 1966 May 27;152(3726):1266–1268. doi: 10.1126/science.152.3726.1266. [DOI] [PubMed] [Google Scholar]
- Richards L. A., Ogata G. Thermocouple for Vapor Pressure Measurement in Biological and Soil Systems at High Humidity. Science. 1958 Oct 31;128(3331):1089–1090. doi: 10.1126/science.128.3331.1089. [DOI] [PubMed] [Google Scholar]
- Scholander P. F., Bradstreet E. D., Hemmingsen E. A., Hammel H. T. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. Science. 1965 Apr 16;148(3668):339–346. doi: 10.1126/science.148.3668.339. [DOI] [PubMed] [Google Scholar]
- Smith R. C., Epstein E. Ion Absorption by Shoot Tissue: Kinetics of Potassium and Rubidium Absorption by Corn Leaf Tissue. Plant Physiol. 1964 Nov;39(6):992–996. doi: 10.1104/pp.39.6.992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Twente J. W., Twente J. A. Regulation of hibernating periods by temperature. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1044–1051. [PMC free article] [PubMed] [Google Scholar]