Abstract
A total of 476 strains of Escherichia coli isolated from humans, pigs, cattle, poultry, potable water, or effluent were examined for iron-suppressible ability to produce hydroxamate. Isolates able to produce such material (Hyd+ isolates) are presumed to be able to carry out hydroxamate-dependent transport of iron. The percentages of Hyd+ isolates found among E. coli isolated from the feces of breast-fed babies (71%), adults (46%), milk-fed calves (32%), or poultry (28%) were significantly greater (P less than 0.01) than the percentages isolated from potable water and effluent (6%) or from the feces of suckling piglets (6%), weaned pigs (6%), or weaned cattle (4%). The percentages of Hyd+ isolates found among E. coli associated with diarrhea in humans (51%), weaned pigs (7%) or calves (25%) were not significantly different (P greater than 0.1) from those found among strains isolated from corresponding nondiarrheic hosts. Many of the E. coli isolated from cases of E. coli bacteremia in humans and poultry were Hyd+ (64% and 83%, respectively). We conclude that ability to carry out hydroxamate-mediated transport of iron is widely distributed among natural isolates of E. coli but that the distribution of Hyd+ E. coli is not random. E. coli isolated from sources where levels of available iron might be expected to be low tend to be Hyd+. It seems that a link may exist between prevalence of Hyd+ E. coli and active host-defense based on restricted availability of iron.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bullen J. J., Rogers H. J., Griffiths E. Role of iron in bacterial infection. Curr Top Microbiol Immunol. 1978;80:1–35. doi: 10.1007/978-3-642-66956-9_1. [DOI] [PubMed] [Google Scholar]
- Bullen J. J., Rogers H. J., Leigh L. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br Med J. 1972 Jan 8;1(5792):69–75. doi: 10.1136/bmj.1.5792.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byers B. R., Powell M. V., Lankford C. E. Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium. J Bacteriol. 1967 Jan;93(1):286–294. doi: 10.1128/jb.93.1.286-294.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frost G. E., Rosenberg H. The inducible citrate-dependent iron transport system in Escherichia coli K12. Biochim Biophys Acta. 1973 Nov 30;330(1):90–101. doi: 10.1016/0005-2736(73)90287-3. [DOI] [PubMed] [Google Scholar]
- Gibson F., Magrath D. I. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I. Biochim Biophys Acta. 1969 Nov 18;192(2):175–184. doi: 10.1016/0304-4165(69)90353-5. [DOI] [PubMed] [Google Scholar]
- Hantke K., Braun V. Membrane receptor dependent iron transport in Escherichia coli. FEBS Lett. 1975 Jan 1;49(3):301–305. doi: 10.1016/0014-5793(75)80771-x. [DOI] [PubMed] [Google Scholar]
- Klasing K. C., Knight C. D., Forsyth D. M. Effects of iron on the anti-coli capacity of sow's milk in vitro and in ligated intestinal segments. J Nutr. 1980 Sep;110(9):1914–1921. doi: 10.1093/jn/110.9.1914. [DOI] [PubMed] [Google Scholar]
- Langman L., Young I. G., Frost G. E., Rosenberg H., Gibson F. Enterochelin system of iron transport in Escherichia coli: mutations affecting ferric-enterochelin esterase. J Bacteriol. 1972 Dec;112(3):1142–1149. doi: 10.1128/jb.112.3.1142-1149.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Law B. A., Reiter B. The isolation and bacteriostatic properties of lactoferrin from bovine milk whey. J Dairy Res. 1977 Oct;44(3):595–599. doi: 10.1017/s0022029900020550. [DOI] [PubMed] [Google Scholar]
- Lewis M. J. Transferable drug resistance and other transferable agents in strains of Escherichia coli from two human populations. Lancet. 1968 Jun 29;1(7557):1389–1393. doi: 10.1016/s0140-6736(68)91973-9. [DOI] [PubMed] [Google Scholar]
- MONOD J., COHEN-BAZIRE G., COHN M. Sur la biosynthèse de la beta-galactosidase (lactase) chez Escherichia coli; la spécificité de l'induction. Biochim Biophys Acta. 1951 Nov;7(4):585–599. doi: 10.1016/0006-3002(51)90072-8. [DOI] [PubMed] [Google Scholar]
- McCullough W. G., Merkal R. S. Tripeptide hydroxamate from Corynebacterium kutscheri. J Bacteriol. 1979 Jan;137(1):243–247. doi: 10.1128/jb.137.1.243-247.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SVIRSKY-GROSS S. Pathogenic strains of coli (0,111) among prematures and the use of human milk in controlling the outbreak of diarrhea. Ann Paediatr. 1958 Feb;190(2):109–115. [PubMed] [Google Scholar]
- Smith H. W., Huggins M. B. Further observations on the association of the colicine V plasmid of Escherichia coli with pathogenicity and with survival in the alimentary tract. J Gen Microbiol. 1976 Feb;92(2):335–350. doi: 10.1099/00221287-92-2-335. [DOI] [PubMed] [Google Scholar]
- Smith H. W., Huggins M. B. The association of the O18, K1 and H7 antigens and the Co1V plasmid of a strain of Escherichia coli with its virulence and immunogenicity. J Gen Microbiol. 1980 Dec;121(2):387–400. doi: 10.1099/00221287-121-2-387. [DOI] [PubMed] [Google Scholar]
- Smith H. W., Huggins M. B. The effect of plasmid-determined and other characteristics on the survival of Escherichia coli in the alimentary tract of two human beings. J Gen Microbiol. 1978 Dec;109(2):375–379. doi: 10.1099/00221287-109-2-375. [DOI] [PubMed] [Google Scholar]
- Stuart S. J., Greenwood K. T., Luke R. K. Hydroxamate-mediated transport of iron controlled by ColV plasmids. J Bacteriol. 1980 Jul;143(1):35–42. doi: 10.1128/jb.143.1.35-42.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warner P. J., Williams P. H., Bindereif A., Neilands J. B. ColV plasmid-specific aerobactin synthesis by invasive strains of Escherichia coli. Infect Immun. 1981 Aug;33(2):540–545. doi: 10.1128/iai.33.2.540-545.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinberg E. D. Iron and infection. Microbiol Rev. 1978 Mar;42(1):45–66. doi: 10.1128/mr.42.1.45-66.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams P. H. Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli. Infect Immun. 1979 Dec;26(3):925–932. doi: 10.1128/iai.26.3.925-932.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams P. H., Warner P. J. ColV plasmid-mediated, colicin V-independent iron uptake system of invasive strains of Escherichia coli. Infect Immun. 1980 Aug;29(2):411–416. doi: 10.1128/iai.29.2.411-416.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodrow G. C., Langman L., Young I. G., Gibson F. Mutations affecting the citrate-dependent iron uptake system in Escherichia coli. J Bacteriol. 1978 Mar;133(3):1524–1526. doi: 10.1128/jb.133.3.1524-1526.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zschocke R. H., Bezkorovainy A. Structure and function of transferrins. II. Transferrin and iron metabolism. Arzneimittelforschung. 1974 May;24(5):726–737. [PubMed] [Google Scholar]