Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Dec;87(23):9315–9318. doi: 10.1073/pnas.87.23.9315

Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human.

R Yokoyama 1, S Yokoyama 1
PMCID: PMC55155  PMID: 2123554

Abstract

We have isolated and sequenced genes from the blind cave fish, Astyanax fasciatus, that are homologous to the human red and green visual pigment genes. The data strongly suggest that, like human, these fish have one red-like visual pigment gene and multiple green-like visual pigment genes. By comparing the DNA sequences of the human and fish visual pigment genes and knowing their phylogenetic relationship, one can infer the direction of amino acid substitutions in the red and green visual pigments. The results indicate that the red pigments in human and fish evolved from the green pigment independently by identical amino acid substitutions in only a few key positions.

Full text

PDF
9317

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer S. N., Lythgoe J. N. The visual pigment basis for cone polymorphism in the guppy, Poecilia reticulata. Vision Res. 1990;30(2):225–233. doi: 10.1016/0042-6989(90)90038-m. [DOI] [PubMed] [Google Scholar]
  2. Chakraborty R., Nei M. Dynamics of gene differentiation between incompletely isolated populations of unequal sizes. Theor Popul Biol. 1974 Jun;5(3):460–469. doi: 10.1016/0040-5809(74)90064-1. [DOI] [PubMed] [Google Scholar]
  3. Drummond-Borg M., Deeb S. S., Motulsky A. G. Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry. Proc Natl Acad Sci U S A. 1989 Feb;86(3):983–987. doi: 10.1073/pnas.86.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drummond-Borg M., Deeb S., Motulsky A. G. Molecular basis of abnormal red-green color vision: a family with three types of color vision defects. Am J Hum Genet. 1988 Nov;43(5):675–683. [PMC free article] [PubMed] [Google Scholar]
  5. Hattori M., Hidaka S., Sakaki Y. Sequence analysis of a KpnI family member near the 3' end of human beta-globin gene. Nucleic Acids Res. 1985 Nov 11;13(21):7813–7827. doi: 10.1093/nar/13.21.7813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Karnik S. S., Sakmar T. P., Chen H. B., Khorana H. G. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8459–8463. doi: 10.1073/pnas.85.22.8459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kosower E. M. Assignment of groups responsible for the "opsin shift" and light absorptions of rhodopsin and red, green, and blue iodopsins (cone pigments). Proc Natl Acad Sci U S A. 1988 Feb;85(4):1076–1080. doi: 10.1073/pnas.85.4.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Loew E. R., Lythgoe J. N. The ecology of cone pigments in teleost fishes. Vision Res. 1978;18(6):715–722. doi: 10.1016/0042-6989(78)90150-5. [DOI] [PubMed] [Google Scholar]
  9. Nathans J., Davenport C. M., Maumenee I. H., Lewis R. A., Hejtmancik J. F., Litt M., Lovrien E., Weleber R., Bachynski B., Zwas F. Molecular genetics of human blue cone monochromacy. Science. 1989 Aug 25;245(4920):831–838. doi: 10.1126/science.2788922. [DOI] [PubMed] [Google Scholar]
  10. Nathans J. Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. Biochemistry. 1990 Jan 30;29(4):937–942. doi: 10.1021/bi00456a013. [DOI] [PubMed] [Google Scholar]
  11. Nathans J., Hogness D. S. Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4851–4855. doi: 10.1073/pnas.81.15.4851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nathans J., Hogness D. S. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell. 1983 Oct;34(3):807–814. doi: 10.1016/0092-8674(83)90537-8. [DOI] [PubMed] [Google Scholar]
  13. Nathans J., Piantanida T. P., Eddy R. L., Shows T. B., Hogness D. S. Molecular genetics of inherited variation in human color vision. Science. 1986 Apr 11;232(4747):203–210. doi: 10.1126/science.3485310. [DOI] [PubMed] [Google Scholar]
  14. Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986 Apr 11;232(4747):193–202. doi: 10.1126/science.2937147. [DOI] [PubMed] [Google Scholar]
  15. Nathans J., Weitz C. J., Agarwal N., Nir I., Papermaster D. S. Production of bovine rhodopsin by mammalian cell lines expressing cloned cDNA: spectrophotometry and subcellular localization. Vision Res. 1989;29(8):907–914. doi: 10.1016/0042-6989(89)90105-3. [DOI] [PubMed] [Google Scholar]
  16. Neitz J., Neitz M., Jacobs G. H. Analysis of fusion gene and encoded photopigment of colour-blind humans. Nature. 1989 Dec 7;342(6250):679–682. doi: 10.1038/342679a0. [DOI] [PubMed] [Google Scholar]
  17. Oprian D. D., Molday R. S., Kaufman R. J., Khorana H. G. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8874–8878. doi: 10.1073/pnas.84.24.8874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takao M., Yasui A., Tokunaga F. Isolation and sequence determination of the chicken rhodopsin gene. Vision Res. 1988;28(4):471–480. doi: 10.1016/0042-6989(88)90169-1. [DOI] [PubMed] [Google Scholar]
  21. Wilbur W. J., Lipman D. J. Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci U S A. 1983 Feb;80(3):726–730. doi: 10.1073/pnas.80.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yokoyama R., Yokoyama S. Isolation, DNA sequence and evolution of a color visual pigment gene of the blind cave fish Astyanax fasciatus. Vision Res. 1990;30(6):807–816. doi: 10.1016/0042-6989(90)90049-q. [DOI] [PubMed] [Google Scholar]
  23. Yokoyama S., Yokoyama R. Molecular evolution of human visual pigment genes. Mol Biol Evol. 1989 Mar;6(2):186–197. doi: 10.1093/oxfordjournals.molbev.a040537. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES