Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1982;1(1):63–67. doi: 10.1002/j.1460-2075.1982.tb01125.x

The reproducible observation of unstained embedded cellular material in thin sections: visualisation of an integral membrane protein by a new mode of imaging for STEM.

E Carlemalm, E Kellenberger
PMCID: PMC552996  PMID: 6201354

Abstract

The contrast on micrographs obtained by conventional imaging in the conventional transmission electron microscope and in the scanning transmission electron microscope (STEM) (brightfield and darkfield) reflects mainly the variations of the mass-density and of the thickness of the specimen. The density differences in resin-embedded, unstained materials are too small to give enough contrast when compared to that produced by the surface perturbations introduced by sectioning. By darkfield imaging, therefore, this variable surface relief does not lead reproducibly to interpretable micrographs of high quality. Imaging by the ratio of elastically over inelastically scattered electrons in the STEM (Z-contrast) depends primarily on the atomic composition of the material. We present here the first experimental tests of theoretical predictions with thin sections; Z-contrast micrographs of septate junctions reveal the transmembrane proteins which are not visible in uranyl acetate stained sections viewed by conventional brightfield imaging.

Full text

PDF
67

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gautier A. Ultrastructural localization of DNA in ultrathin tissue sections. Int Rev Cytol. 1976;44:113–191. doi: 10.1016/s0074-7696(08)61649-6. [DOI] [PubMed] [Google Scholar]
  2. Jones A. V., Leonard K. R. Scanning transmission electron microscopy of unstained biological sections. Nature. 1978 Feb 16;271(5646):659–660. doi: 10.1038/271659a0. [DOI] [PubMed] [Google Scholar]
  3. Ottensmeyer F. P., Andrew J. W. High-resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopic imaging. J Ultrastruct Res. 1980 Sep;72(3):336–348. doi: 10.1016/s0022-5320(80)90069-6. [DOI] [PubMed] [Google Scholar]
  4. RYTER A., KELLENBERGER E. L'inclusion au polyester pour l'ultramicrotomie. J Ultrastruct Res. 1958 Dec;2(2):200–214. doi: 10.1016/s0022-5320(58)90018-2. [DOI] [PubMed] [Google Scholar]
  5. Sjöstrand F. S., Dubochet J., Wurtz M., Kellenberger E. Dark-field electron microscopic analysis of mitochondrial membranes. J Ultrastruct Res. 1978 Oct;65(1):23–29. doi: 10.1016/s0022-5320(78)90018-7. [DOI] [PubMed] [Google Scholar]
  6. Taylor K. A. Structure determination of frozen, hydrated, crystalline biological specimens. J Microsc. 1978 Jan;112(1):115–125. doi: 10.1111/j.1365-2818.1978.tb01159.x. [DOI] [PubMed] [Google Scholar]
  7. Tokuyasu K. T., Peacock W. J., Hardy R. W. Dynamics of spermiogenesis in Drosophila melanogaster. II. Coiling process. Z Zellforsch Mikrosk Anat. 1972;127(4):492–525. doi: 10.1007/BF00306868. [DOI] [PubMed] [Google Scholar]
  8. Weibull C. Dark-field electron microscopy of thin sections of Trichosporon cutaneum. J Bacteriol. 1974 Oct;120(1):527–531. doi: 10.1128/jb.120.1.527-531.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES