Abstract
Axonal growth cones originating from explants of embryonic chick retina were simultaneously exposed to two different cell monolayers and their preference for particular monolayers as a substrate for growth was determined. These experiments show that: (1) nasal retinal axons can distinguish between retinal and tectal cells; (2) temporal retinal axons can distinguish between tectal cells that originated from different positions within the tectum along the antero-posterior axis; (3) axons originating from nasal parts of the retina have different recognizing capabilities from temporal axons; (4) the property of the tectal cells, which is attractive for temporal axons, has a graded distribution along the antero-posterior axis of the tectum; and (5) this gradient also exists in non-innervated tecta.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonhoeffer F., Huf J. Recognition of cell types by axonal growth cones in vitro. Nature. 1980 Nov 13;288(5787):162–164. doi: 10.1038/288162a0. [DOI] [PubMed] [Google Scholar]
- Cowan W. M., Martin A. H., Wenger E. Mitotic patterns in the optic tectum of the chick during normal development and after early removal of the optic vesicle. J Exp Zool. 1968 Sep;169(1):71–92. doi: 10.1002/jez.1401690110. [DOI] [PubMed] [Google Scholar]
- Fraser S. E. Differential adhesion approach to the patterning of nerve connections. Dev Biol. 1980 Oct;79(2):453–464. doi: 10.1016/0012-1606(80)90130-x. [DOI] [PubMed] [Google Scholar]
- Gierer A. Development of projections between areas of the nervous system. Biol Cybern. 1981;42(1):69–78. doi: 10.1007/BF00335161. [DOI] [PubMed] [Google Scholar]
- Gottlieb D. I., Glaser L. A novel assay of neuronal cell adhesion. Biochem Biophys Res Commun. 1975 Apr 7;63(3):815–821. doi: 10.1016/s0006-291x(75)80456-6. [DOI] [PubMed] [Google Scholar]
- Gottlieb D. I., Rock K., Glaser L. A gradient of adhesive specificity in developing avian retina. Proc Natl Acad Sci U S A. 1976 Feb;73(2):410–414. doi: 10.1073/pnas.73.2.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halfter W., Claviez M., Schwarz U. Preferential adhesion of tectal membranes to anterior embryonic chick retina neurites. Nature. 1981 Jul 2;292(5818):67–70. doi: 10.1038/292067a0. [DOI] [PubMed] [Google Scholar]
- LaVail J. H., Cowan W. M. The development of the chick optic tectum. I. Normal morphology and cytoarchitectonic development. Brain Res. 1971 May 21;28(3):391–419. doi: 10.1016/0006-8993(71)90053-9. [DOI] [PubMed] [Google Scholar]
- LaVail J. H., Cowan W. M. The development of the chick optic tectum. II. Autoradiographic studies. Brain Res. 1971 May 21;28(3):421–441. [PubMed] [Google Scholar]
- Letourneau P. C. Cell-to-substratum adhesion and guidance of axonal elongation. Dev Biol. 1975 May;44(1):92–101. doi: 10.1016/0012-1606(75)90379-6. [DOI] [PubMed] [Google Scholar]
- Rager G., von Oeynhausen B. Ingrowth and ramification of retinal fibers in the developing optic tectum of the chick embryo. Exp Brain Res. 1979 Apr 2;35(2):213–227. doi: 10.1007/BF00236612. [DOI] [PubMed] [Google Scholar]
- Trisler G. D., Schneider M. D., Nirenberg M. A topographic gradient of molecules in retina can be used to identify neuron position. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2145–2149. doi: 10.1073/pnas.78.4.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]