Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1987 Jul;6(7):1997–2002. doi: 10.1002/j.1460-2075.1987.tb02463.x

Nuclei act as independent and integrated units of replication in a Xenopus cell-free DNA replication system.

J J Blow 1, J V Watson 1
PMCID: PMC553588  PMID: 3653079

Abstract

We have used a novel approach to investigate the control of initiation of replication of sperm nuclei in a Xenopus cell-free extract. Nascent DNA was labelled with biotin by supplementing the extract with biotin-11-dUTP, and isolated nuclei were then probed with fluorescein-conjugated streptavidin. Flow cytometry was used to measure the biotin content of individual nuclei and their total DNA content. This showed that incorporation of the biotinylated precursor increases linearly with DNA content. Haploid sperm nuclei replicate fully to reach the diploid DNA content over 2-6 h in the extract. Synthesis stops once the diploid DNA content is reached. Different nuclei enter S phase at different times over greater than 1.5 h, although they share the same cytoplasmic environment. Nuclei reach their maximum rates of synthesis soon after entry into S phase and some replicate fully in less than 0.5 h, resembling the rates of replication observed in the intact egg. These results indicate that initiations are coordinated within each nucleus such that the nucleus is the fundamental unit of replication in the cell-free system.

Full text

PDF
1997

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blow J. J., Laskey R. A. Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell. 1986 Nov 21;47(4):577–587. doi: 10.1016/0092-8674(86)90622-7. [DOI] [PubMed] [Google Scholar]
  2. Callan H. G. Replication of DNA in the chromosomes of eukaryotes. Proc R Soc Lond B Biol Sci. 1972 Apr 18;181(1062):19–41. doi: 10.1098/rspb.1972.0039. [DOI] [PubMed] [Google Scholar]
  3. Darzynkiewicz Z., Traganos F., Sharpless T. K., Melamed M. R. Cell cycle-related changes in nuclear chromatin of stimulated lymphocytes as measured by flow cytometry. Cancer Res. 1977 Dec;37(12):4635–4640. [PubMed] [Google Scholar]
  4. Darzynkiewicz Z., Traganos F., Sharpless T., Melamed M. R. Different sensitivity of DNA in situ in interphase and metaphase chromatin to heat denaturation. J Cell Biol. 1977 Apr;73(1):128–138. doi: 10.1083/jcb.73.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dawid I. B. Deoxyribonucleic acid in amphibian eggs. J Mol Biol. 1965 Jul;12(3):581–599. doi: 10.1016/s0022-2836(65)80313-8. [DOI] [PubMed] [Google Scholar]
  6. Langer P. R., Waldrop A. A., Ward D. C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6633–6637. doi: 10.1073/pnas.78.11.6633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lohka M. J., Masui Y. Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science. 1983 May 13;220(4598):719–721. doi: 10.1126/science.6601299. [DOI] [PubMed] [Google Scholar]
  8. Lohka M. J., Masui Y. Roles of cytosol and cytoplasmic particles in nuclear envelope assembly and sperm pronuclear formation in cell-free preparations from amphibian eggs. J Cell Biol. 1984 Apr;98(4):1222–1230. doi: 10.1083/jcb.98.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Miake-Lye R., Kirschner M. W. Induction of early mitotic events in a cell-free system. Cell. 1985 May;41(1):165–175. doi: 10.1016/0092-8674(85)90071-6. [DOI] [PubMed] [Google Scholar]
  10. Newport J. Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell. 1987 Jan 30;48(2):205–217. doi: 10.1016/0092-8674(87)90424-7. [DOI] [PubMed] [Google Scholar]
  11. Watson J. V. A method for improving light collection by 600% from square cross section flow cytometry chambers. Br J Cancer. 1985 Mar;51(3):433–435. doi: 10.1038/bjc.1985.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Watson J. V. Dual laser beam focussing for flow cytometry through a single crossed cylindrical lens pair. Cytometry. 1981 Jul;2(1):14–19. doi: 10.1002/cyto.990020103. [DOI] [PubMed] [Google Scholar]
  13. Watson J. V. Enzyme kinetic studies in cell populations using fluorogenic substrates and flow cytometric techniques. Cytometry. 1980 Sep;1(2):143–151. doi: 10.1002/cyto.990010209. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES