Abstract
Covariate measurement error and missing responses are typical features in longitudinal data analysis. There has been extensive research on either covariate measurement error or missing responses, but relatively little work has been done to address both simultaneously. In this paper, we propose a simple method for the marginal analysis of longitudinal data with time-varying covariates, some of which are measured with error, while the response is subject to missingness. Our method has a number of appealing properties: assumptions on the model are minimal, with none needed about the distribution of the mismeasured covariate; implementation is straightforward and its applicability is broad. We provide both theoretical justification and numerical results.
Keywords: Functional measurement error, Generalized method of moments, Inverse probability weighting, Longitudinal data, Measurement error, Missing response, Structural measurement error
References
- Agricultural Research Service. Design and Operation: The Continuing Survey of Food Intakes by Individuals and the Diet and Health Knowledge Survey, 1994–96. 1997 US Department of Agriculture, Hyattsville, MD. [Google Scholar]
- Beasley J. M. Riley W. T. David A. Singh J. Evaluation of a PDA-based dietary assessment and intervention program: a randomized controlled trial. J. Am. College Nutr. 2008;27:280–86. doi: 10.1080/07315724.2008.10719701. [DOI] [PubMed] [Google Scholar]
- Carroll R. J. Ruppert D. Stefanski L. A. Crainiceanu C. M. Measurement Error in Nonlinear Models: A Modern Perspective. 2nd ed. New York: Chapman & Hall/CRC Press; 2006. [Google Scholar]
- Cook J. Stefanski L. A. A simulation extrapolation method for parametric measurement error models. J. Am. Statist. Assoc. 1995;89:1314–28. [Google Scholar]
- Food and Nutrition Board. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) The National Academies Press; 2005. Washington D.C. [Google Scholar]
- Hall P. Ma Y. Measurement error models with unknown error structure. J. R. Statist. Soc. B. 2007;69:429–46. [Google Scholar]
- Hansen L. P. Large sample properties of generalized method of moments estimators. Econometrica. 1982;50:1029–54. [Google Scholar]
- Huang Y. Wang C. Y. Consistent functional methods for logistic regression with errors in covariates. J. Am. Statist. Assoc. 2001;96:1469–82. [Google Scholar]
- Lai T. L. Small D. Marginal regression analysis of longitudinal data with time-dependent covariates: a generalized method of moments approach. J. R. Statist. Soc. B. 2007;69:79–99. [Google Scholar]
- Li E. Zhang D. Davidian M. Conditional estimation for generalized linear models when covariates are subject-specific parameters in a mixed model for longitudinal measurements. Biometrics. 2004;60:1–7. doi: 10.1111/j.0006-341X.2004.00170.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li E. Wang N. Wang N.-Y. Joint models for a primary endpoint and multiple longitudinal covariate processes. Biometrics. 2007;63:1068–78. doi: 10.1111/j.1541-0420.2007.00822.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang H. Generalized partially linear mixed-effects models incorporating mismeasured covariates. Ann. Inst. Statist. Math. 2009;61:27–46. doi: 10.1007/s10463-007-0146-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin X. Carroll R. J. Semiparametric estimation in general repeated measures problems. J. R. Statist. Soc. B. 2006;68:68–88. [Google Scholar]
- Liu W. Wu L. Simultaneous inference for semiparametric nonlinear mixed-effects models with covariate measurement errors and missing responses. Biometrics. 2007;63:342–50. doi: 10.1111/j.1541-0420.2006.00687.x. [DOI] [PubMed] [Google Scholar]
- Ma Y. Li R. Variable selection in measurement error models. Bernoulli. 2010;16:274–300. doi: 10.3150/09-bej205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura T. Corrected score functions for errors-in-variables models: methodology and application to generalized linear models. Biometrika. 1990;77:127–37. [Google Scholar]
- Newey W. K. McFadden D. Estimation in large samples. In: McFadden D., Engler R., , editors. Handbook of Econometrics. vol. 4. Amsterdam: North-Holland; 1993. [Google Scholar]
- Palta M. Lin C. Y. Latent variables, measurement error and methods for analysing longitudinal binary and ordinal data. Statist. Med. 1999;18:385–96. doi: 10.1002/(sici)1097-0258(19990228)18:4<385::aid-sim25>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
- Pan W. Zeng D. Lin X. Estimation in semiparametric transition measurement error models for longitudinal data. Biometrics. 2009;65:728–36. doi: 10.1111/j.1541-0420.2008.01173.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pepe M. S. Anderson G. L. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Commun. Statist. B. 1994;23:939–51. [Google Scholar]
- Pepe M. S. Couper D. Modeling partly conditional means with longitudinal data. J. Am. Statist. Assoc. 1997;92:991–8. [Google Scholar]
- Stefanski L. A. Unbiased estimation of a nonlinear function of a normal mean with application to measurement error models. Commun. Statist. A. 1989;18:4335–58. [Google Scholar]
- Stefanski L. A. Carroll R. J. Conditional scores and optimal scores in generalized linear measurement error models. Biometrika. 1987;74:703–16. [Google Scholar]
- Tooze J. A. Vitolins M. Z. Smith S. L. Arcury T. A. Davis C. C. Bell R. A. DeVellis R. F. Quandt S. A. High levels of low energy reporting on 24-hour recalls and three questionnaires in an elderly low-socioeconomic status population. J. Nutr. 2007;137:1286–93. doi: 10.1093/jn/137.5.1286. [DOI] [PubMed] [Google Scholar]
- Tsiatis A. A. Ma Y. Locally efficient semiparametric estimators for functional measurement error models. Biometrika. 2004;91:835–48. [Google Scholar]
- Wang C. Y. Huang Y. Chao E. C. Jeffcoat M. K. Expected estimating equations for missing data, measurement error, and misclassification, with application to longitudinal nonignorable missing data. Biometrics. 2008;64:85–95. doi: 10.1111/j.1541-0420.2007.00839.x. [DOI] [PubMed] [Google Scholar]
- Wang N. Lin X. Gutierrez R. G. Carroll R. J. Generalized linear mixed measurement error models. J. Am. Statist. Assoc. 1998;93:249–61. [Google Scholar]
- Xiao Z. Shao J. Palta M. GMM in linear regression for longitudinal data with multiple covariates measured with error. J. Appl. Statist. 2010;37:791–805. [Google Scholar]
- Yi G. Y. Robust methods for incomplete longitudinal data with mismeasured covariates. Far East J. Theor. Statist. 2005;16:205–34. [Google Scholar]
- Yi G. Y. A simulation-based marginal method for longitudinal data with dropout and mismeasured covariates. Biostatistics. 2008;9:501–12. doi: 10.1093/biostatistics/kxm054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi G. Y. Liu W. Wu L. Simultaneous inference and bias analysis for longitudinal data with covariate measurement error and missing responses. Biometrics. 2011;67:67–75. doi: 10.1111/j.1541-0420.2010.01437.x. [DOI] [PubMed] [Google Scholar]
- Zhou Y. Liang H. Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates. Ann. Statist. 2009;37:427–58. doi: 10.1214/07-AOS561. [DOI] [PMC free article] [PubMed] [Google Scholar]