Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1985 Dec 1;4(12):3307–3313. doi: 10.1002/j.1460-2075.1985.tb04081.x

Trypanosoma (Nannomonas) congolense: identification of two karyotypic groups.

P A Majiwa, R A Masake, V M Nantulya, R Hamers, G Matthyssens
PMCID: PMC554658  PMID: 4092683

Abstract

Orthogonal-field-alternation gel electrophoresis and DNA blot hybridizations have been used to investigate the genomic relationships among trypanosome clones of subgenus Nannomonas. The results indicate that Trypanosoma (Nannomonas) congolense comprises at least two distinct groups of parasites that differ in both molecular karyotype and repetitive DNA sequences. A description of these two groups and their distinction from Trypanosoma (Nannomonas) simiae is presented.

Full text

PDF
3311

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry J. D., Gathuo H. Antigenic variation in Trypanosoma vivax: isolation of a serodeme. Parasitology. 1984 Aug;89(Pt 1):49–58. doi: 10.1017/s0031182000001128. [DOI] [PubMed] [Google Scholar]
  2. Bhasin V. K., Clayton C., Trager W., Cross G. A. Variations in the organization of repetitive DNA sequences in the genomes of Plasmodium falciparum clones. Mol Biochem Parasitol. 1985 May;15(2):149–158. doi: 10.1016/0166-6851(85)90116-1. [DOI] [PubMed] [Google Scholar]
  3. Carle G. F., Olson M. V. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 1984 Jul 25;12(14):5647–5664. doi: 10.1093/nar/12.14.5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donelson J. E., Majiwa P. A., Williams R. O. Kinetoplast DNA minicircles of Trypanosoma brucei share regions of sequence homology. Plasmid. 1979 Oct;2(4):572–588. doi: 10.1016/0147-619x(79)90055-6. [DOI] [PubMed] [Google Scholar]
  5. GODFREY D. G. Types of Trypanosoma congolense. II. Differences in the courses of infection. Ann Trop Med Parasitol. 1961 Jul;55:154–166. [PubMed] [Google Scholar]
  6. Gonzalez A., Prediger E., Huecas M. E., Nogueira N., Lizardi P. M. Minichromosomal repetitive DNA in Trypanosoma cruzi: its use in a high-sensitivity parasite detection assay. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3356–3360. doi: 10.1073/pnas.81.11.3356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grab D. J., Bwayo J. J. Isopycnic isolation of African trypanosomes on Percoll gradients formed in situ. Acta Trop. 1982 Dec;39(4):363–366. [PubMed] [Google Scholar]
  8. Grunstein M., Hogness D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. doi: 10.1073/pnas.72.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoeijmakers J. H., Borst P., van den Burg J., Weissmann C., Cross G. A. The isolation of plasmids containing DNA complementary to messenger RNA for variant surface glycoproteins of Trypanosoma brucei. Gene. 1980 Mar;8(4):391–417. doi: 10.1016/0378-1119(80)90043-8. [DOI] [PubMed] [Google Scholar]
  10. Kemp D. J., Corcoran L. M., Coppel R. L., Stahl H. D., Bianco A. E., Brown G. V., Anders R. F. Size variation in chromosomes from independent cultured isolates of Plasmodium falciparum. Nature. 1985 May 23;315(6017):347–350. doi: 10.1038/315347a0. [DOI] [PubMed] [Google Scholar]
  11. Lanham S. M., Godfrey D. G. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol. 1970 Dec;28(3):521–534. doi: 10.1016/0014-4894(70)90120-7. [DOI] [PubMed] [Google Scholar]
  12. Leon W., Frasch A. C., Hoeijmakers J. H., Fase-Fowler F., Borst P., Brunel F., Davison J. Maxi-circles and mini-circles in kinetoplast DNA from trypanosoma cruzi. Biochim Biophys Acta. 1980 Apr 30;607(2):221–231. doi: 10.1016/0005-2787(80)90075-1. [DOI] [PubMed] [Google Scholar]
  13. Majiwa P. A., Matthyssens G., Williams R. O., Hamers R. Cloning and analysis of Trypanosoma (Nannomonas) congolense ILNat 2.1 VSG gene. Mol Biochem Parasitol. 1985 Jun;16(1):97–108. doi: 10.1016/0166-6851(85)90052-0. [DOI] [PubMed] [Google Scholar]
  14. Masake R. A., Musoke A. J., Nantulya V. M. Specific antibody responses to the variable surface glycoproteins of Trypanosoma congolense in infected cattle. Parasite Immunol. 1983 Jul;5(4):345–355. doi: 10.1111/j.1365-3024.1983.tb00750.x. [DOI] [PubMed] [Google Scholar]
  15. Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
  16. Sloof P., Bos J. L., Konings A. F., Menke H. H., Borst P., Gutteridge W. E., Leon W. Characterization of satellite DNA in Trypanosoma brucei and Trypanosoma cruzi. J Mol Biol. 1983 Jun 15;167(1):1–21. doi: 10.1016/s0022-2836(83)80031-x. [DOI] [PubMed] [Google Scholar]
  17. Smith G. E., Summers M. D. The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Anal Biochem. 1980 Nov 15;109(1):123–129. doi: 10.1016/0003-2697(80)90019-6. [DOI] [PubMed] [Google Scholar]
  18. Spithill T. W., Grumont R. J., Mitchell G. F. Characterization of isolates and clones of Leishmania by analysis of kinetoplast DNA. J Cell Biochem. 1984;24(2):103–112. doi: 10.1002/jcb.240240202. [DOI] [PubMed] [Google Scholar]
  19. Tait A., Barry J. D., Wink R., Sanderson A., Crowe J. S. Enzyme variation in T. brucei ssp. II. Evidence for T. b. rhodesiense being a set of variants of T. b. brucei. Parasitology. 1985 Feb;90(Pt 1):89–100. doi: 10.1017/s0031182000049040. [DOI] [PubMed] [Google Scholar]
  20. Tait A. Evidence for diploidy and mating in trypanosomes. Nature. 1980 Oct 9;287(5782):536–538. doi: 10.1038/287536a0. [DOI] [PubMed] [Google Scholar]
  21. Van der Ploeg L. H., Schwartz D. C., Cantor C. R., Borst P. Antigenic variation in Trypanosoma brucei analyzed by electrophoretic separation of chromosome-sized DNA molecules. Cell. 1984 May;37(1):77–84. doi: 10.1016/0092-8674(84)90302-7. [DOI] [PubMed] [Google Scholar]
  22. Vickerman K., Preston T. M. Spindle microtubules in the dividing nuclei of trypanosomes. J Cell Sci. 1970 Mar;6(2):365–383. doi: 10.1242/jcs.6.2.365. [DOI] [PubMed] [Google Scholar]
  23. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Williams R. O., Young J. R., Majiwa P. A., Doyle J. J., Shapiro S. Z. Contextural genomic rearrangements of variable-antigen genes in Trypanosoma brucei. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):945–949. doi: 10.1101/sqb.1981.045.01.111. [DOI] [PubMed] [Google Scholar]
  25. Wirth D. F., Pratt D. M. Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6999–7003. doi: 10.1073/pnas.79.22.6999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Young C. J., Godfrey D. G. Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Ann Trop Med Parasitol. 1983 Oct;77(5):467–481. doi: 10.1080/00034983.1983.11811740. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES